
Producing Open
Source Software

How to Run a Success-
ful Free Software Project

2nd Edition

Karl Fogel

Producing Open Source Software: How to Run a Suc-
cessful Free Software Project: 2nd Edition
by Karl Fogel
Copyright © 2005-2023 Karl Fogel, under the CreativeCommons Attribution-ShareAlike (4.0)
license.

Version: 2.3310 (24 Nov 2023)

Home site: https://producingoss.com/

https://producingoss.com/

Dedication
This book is dedicated to two dear friends without whom it would not have been possible:
Karen Underhill and Jim Blandy.

i

Table of Contents
Preface .. viii

Why Write This Book? .. viii
Who Should Read This Book? .. ix
Sources ... ix
Acknowledgements ... xi

For the first edition (2005) ... xi
For the second edition (2023) ... xiii

Disclaimer .. xvii
1. Introduction .. 1

History ... 4
The Rise of Proprietary Software and Free Software 5
"Free" Versus "Open Source" ... 10

The Situation Today ... 13
2. Getting Started ... 15

Starting From What You Have ... 17
Choose a Good Name ... 18
Have a Clear Mission Statement ... 20
State That the Project is Free ... 21
Features and Requirements List .. 21
Development Status .. 22
Downloads .. 24
Version Control and Bug Tracker Access ... 25
Communications Channels ... 26
Developer Guidelines ... 27
Documentation .. 27
Demos, Screenshots, Videos, and Example Output 31
Hosting .. 32

Choosing a License and Applying It ... 33
The "Do Anything" Licenses ... 34
The GPL .. 34
How to Apply a License to Your Software ... 35

Setting the Tone .. 36
Avoid Private Discussions ... 37
Nip Rudeness in the Bud .. 39
Practice Conspicuous Code Review ... 41
Be Open From Day One ... 43

Opening a Formerly Closed Project ... 46
Announcing .. 48

3. Technical Infrastructure ... 51

ii

Producing Open
Source Software

What a Project Needs ... 53
Web Site .. 54

Canned Hosting ... 55
Message Forums / Mailing Lists ... 59

Choosing the Right Forum Management Software 62
Version Control ... 73

Version Control Vocabulary .. 73
Choosing a Version Control System .. 78
Using the Version Control System .. 79
Receiving and Reviewing Contributions ... 84

Bug Tracker .. 87
Interaction with Email .. 90
Pre-Filtering the Bug Tracker ... 91

Real-Time Chat Systems ... 92
Chat Rooms and Growth ... 93
Nick-Flagging and Notifications ... 93
Chat Bots ... 95

Wikis ... 96
Wikis and Spam .. 97
Choosing a Wiki .. 97

Translation Infrastructure .. 98
Social Networking Services ... 100

4. Social and Political Infrastructure .. 102
Forkability .. 102
Benevolent Dictators ... 103

Who Can Be a Good Benevolent Dictator? ... 104
Consensus-based Democracy .. 105

Version Control Means You Can Relax .. 106
When Consensus Cannot Be Reached, Vote .. 107
When To Vote ... 108
Who Votes? .. 109
Polls Versus Votes ... 111
Vetoes .. 111

Writing It All Down ... 112
Joining or Creating a Non-Profit Organization ... 114

5. Organizations and Money: Businesses, Non-Profits, and Governments 116
The Economics of Open Source .. 116
Goals of Corporate Involvement ... 119
Governments and Open Source ... 121

Being Open Source From Day One is Especially Important for Govern-
ment Projects ... 123

Hire for the Long Term ... 123

iii

Producing Open
Source Software

Case study .. 124
Appear as Many, Not as One ... 125
Be Open About Your Motivations ... 125
Money Can't Buy You Love .. 127
Contracting ... 129

Hiring From Within the Community .. 129
Hiring From Outside The Community .. 130
Contracting and Transparency .. 130
Review and Acceptance of Changes .. 131
Update Your RFI, RFP and Contract Language 133
Open Source Quality Assurance (OSQA) ... 134
Don't Surprise Your Lawyers ... 137

Funding Non-Programming Activities .. 138
Technical Quality Assurance (i.e., Professional Testing) 138
Legal Advice and Protection .. 140
Documentation and Usability ... 140
Providing Build Farms and Development Servers 142
Running Security Audits .. 142
Sponsoring Conferences, Hackathons, and other Developer Meetings 142

Marketing ... 143
Open Source and Freedom from Vendor Lock-In 144
Remember That You Are Being Watched ... 145
Don't Bash Competing Vendors' Efforts ... 146
"Commercial" vs "Proprietary" ... 147

Open Source and the Organization .. 148
Dispel Myths Within Your Organization .. 148
Foster Pools of Expertise in Multiple Places ... 152
Don't Let Publicity Events Drive Project Schedule 153
The Key Role of Middle Management ... 154
InnerSourcing .. 155

Hiring Open Source Developers .. 157
Hiring for Influence .. 158

Evaluating Open Source Projects .. 159
Crowdfunding and Bounties ... 161

6. Communications ... 164
Written Culture .. 164
You Are What You Write ... 165

Structure and Formatting ... 166
Content ... 167
Tone .. 168
Recognizing Rudeness .. 170
Face ... 171

iv

Producing Open
Source Software

Avoiding Common Pitfalls ... 174
Don't Post Without a Purpose ... 174
Productive vs Unproductive Threads .. 175
The Smaller the Topic, the Longer the Debate 177
Avoid Holy Wars ... 178
The "Noisy Minority" Effect .. 180
Don't Bash Competing Open Source Products 181

Difficult People ... 181
Handling Difficult People .. 182
Case study .. 184

Handling Growth ... 185
Conspicuous Use of Archives ... 187
Codifying Tradition .. 190

Choose the Right Forum ... 193
Cross-Link Between Forums .. 194

Publicity ... 195
Announcing Releases and Other Major Events 195
Announcing Security Vulnerabilities .. 197

7. Packaging, Releasing, and Daily Development ... 206
Release Numbering ... 207

Release Number Components ... 208
Semantic Versioning ... 210
The Even/Odd Strategy ... 212

Release Branches ... 213
Mechanics of Release Branches .. 214

Stabilizing a Release ... 215
Dictatorship by Release Owner ... 217
Voting on Changes ... 217

Packaging ... 220
Format .. 221
Name and Layout ... 221
Compilation and Installation ... 224
Binary Packages ... 225

Testing and Releasing ... 226
Candidate Releases ... 228
Announcing Releases .. 228

Maintaining Multiple Release Lines .. 229
Security Releases ... 229

Releases and Daily Development .. 230
Planning Releases ... 232

8. Managing Participants ... 234
Community and Motivation ... 235

v

Producing Open
Source Software

Delegation ... 236
Praise and Criticism .. 238
Prevent Territoriality ... 240
The Automation Ratio ... 242
Treat Every User as a Potential Participant ... 245
Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints,
Retreats .. 248

Share Management Tasks as Well as Technical Tasks 249
"Manager" Does Not Mean "Owner" ... 249

Transitions .. 256
Committers ... 259

Committers vs Maintainers .. 260
Choosing Committers .. 260
Revoking Commit Access .. 261
Partial Commit Access .. 262
Dormant Committers .. 263
Avoid Mystery ... 263

Credit ... 264
Forks .. 266

"Development Forks" versus "Hard Forks" ... 266
Figuring Out Whether You're the Fork ... 267
Handling a Fork ... 268
Initiating a Fork ... 270

9. Legal Matters: Licenses, Copyrights, Trademarks and Patents 272
Terminology .. 272
Aspects of Licenses .. 276
The GPL and License Compatibility .. 278
Choosing a License .. 279

The GNU General Public License ... 281
Contributor Agreements .. 284

Doing Nothing ... 285
Contributor License Agreements ... 285

Proprietary Relicensing ... 286
Problems with Proprietary Relicensing ... 287

Trademarks ... 289
Case study: Mozilla Firefox, the Debian Project, and Iceweasel 290
Case study: The GNOME Logo and the Fish Pedicure Shop 291

Patents .. 292
Further Resources ... 294

A. Copyright ... 296
Attribution-ShareAlike 4.0 International .. 296

Using Creative Commons Public Licenses ... 297

vi

Producing Open
Source Software

Creative Commons Attribution-ShareAlike 4.0 International Public Li-
cense .. 297

vii

Preface

Why Write This Book?
At parties, people no longer give me a blank stare when I tell them I work in open source
software. "Oh, yes — like Linux?" they say. I nod eagerly in agreement. "Yes, exactly!
That's what I do." It's nice not to be completely fringe anymore. In the past, the next ques-
tion was usually fairly predictable: "How do you make money doing that?" To answer, I'd
summarize the economics of free software: that there are organizations in whose interest it is
to have certain software exist, but that they don't need to sell copies, they just want to make
sure the software is available and maintained, as a tool instead of as a rentable monopoly.

The next question is not always about money, though. The business case for open source
software1 is no longer so mysterious, and even non-programmers already understand — or
at least are not surprised — that there are people employed at it full time. Instead, the next
question is often "Oh, what's that like?"

I didn't have a satisfactory answer ready, and the harder I tried to come up with one, the more
I realized how complex a topic it really is. Running a free software project is not exactly like
running a business (imagine having to constantly negotiate the nature of your product with
a group of random people of diverse motivations and interests, most of whom you've never
met!). Nor, for various reasons, is it exactly like running a traditional non-profit organization,
nor a government. It has similarities to all these things, but I have slowly come to the con-
clusion that free software is sui generis. There are many things with which it can be useful-
ly compared, but none with which it can be equated. Indeed, even the assumption that free
software projects can be "run" is a stretch. A free software project can be started, and it can
be influenced by interested parties. But its assets cannot be made the property of any single
owner, and as long as there are people somewhere — anywhere — interested in continuing
it, it can never be unilaterally shut down. Everyone has infinite power; everyone has no pow-
er. It's an interesting situation.

That is why I wanted to write this book in the first place, and, a decade later, wanted to up-
date it. Free software projects have evolved a distinct culture, an ethos in which the liberty
to make the software do anything one wants is a central tenet. Yet the result of this liberty is
not a scattering of individuals each going their own separate way with the code, but enthu-
siastic collaboration and frequent compromise. Indeed, competence at cooperation itself is
one of the most highly valued skills in free software. To manage these projects is to engage

1The terms "open source software" and "free software" are essentially synonymous in this context; they are discussed
more in the section called “"Free" Versus "Open Source"” [10].

viii

Preface

in a kind of hypertrophied cooperation, where one's ability not only to work with others but
to come up with new ways of working together can result in tangible benefits to the software
and the community that develops it. This book attempts to describe the techniques by which
this may be done. It is by no means complete, but it is at least a beginning.

Good free software is a worthy goal in itself, and I hope that readers who come looking for
ways to achieve it will be satisfied with what they find here. But beyond that I also hope to
convey something of the sheer pleasure to be had from working with a motivated team of
open source developers, and from interacting with users in the wonderfully direct way that
open source encourages. Participating in a successful free software project is a deep pleasure,
and ultimately that's what keeps the whole system going.

Who Should Read This Book?
This book is meant for managers and software developers who are considering starting an
open source project, or who have started one and are wondering what to do now. It should al-
so be helpful for people who just want to participate in an open source project but have never
done so before.

The reader need not be a programmer, but should know basic software engineering concepts
such as APIs, source code, compilers, and patches.

Prior experience with open source software, as either a user or a developer, is not necessary.
Those who have worked in free software projects before will probably find at least some
parts of the book a bit obvious, and may want to skip those sections. Because there's such a
potentially wide range of audience experience, I've made an effort to label sections clearly,
and to say when something can be skipped by those already familiar with the material.

Sources
Much of the raw material for the first edition of this book came from five years of working
with the Subversion project (http://subversion.apache.org/). Subversion is an open source
version control system, written from scratch, which was intended to (and did for a while) re-
place CVS as the de facto version control system of choice in the open source community.2

The project was started by my employer, CollabNet (http://www.collab.net/), in early 2000,
and thank goodness CollabNet understood right from the start how to run it as a truly collab-
orative, distributed effort. We got a lot of developer buy-in early on; today the majority of
developers on the project are not CollabNet employees.

2Subversion was eventually supplanted by Git, one of several systems that implement "distributed version control", a
style of working that is better suited to collaborative development than Subversion's centralized model.

ix

http://subversion.apache.org/
http://www.collab.net/

Preface

Subversion is in many ways a classic example of an open source project, and I ended up
drawing on it more heavily than I originally expected. This was partly a matter of conve-
nience: whenever I needed an example of a particular phenomenon, I could usually call one
up from Subversion right off the top of my head. But it was also a matter of verification. Al-
though I am involved in many other free software projects to varying degrees, and talk to
colleagues involved in many more, one quickly realizes when writing for print that all asser-
tions need to be fact-checked. I didn't want to make statements about events in other projects
based only on what I could read in their public discussion archives. If someone were to try
that with Subversion, I knew, she'd be right about half the time and wrong the other half. So
when drawing inspiration or examples from a project with which I didn't have direct experi-
ence, I tried to first talk to an informant there, someone I could trust to explain what was re-
ally going on.

While Subversion was my full time job from 2000-2006, I've been involved in free software
for more than twenty-five years. Other projects and organizations that have influenced this
book include:

• The GNU Emacs text editor project at the Free Software Foundation.

• Concurrent Versions System (CVS), which I worked on intensely in 1994–1995 with Jim
Blandy and was involved with intermittently for a few years afterwards.

• The collection of open source projects known as the Apache Software Foundation, espe-
cially the Apache Portable Runtime (APR) and Apache HTTP Server.

• The Launchpad.net project at Canonical, Ltd.

• Code for America and O'Reilly Media, which gave me an inside view on open source civic
technology development starting in 2010, and kindly kept me in the loop after I became a
full-time consultant at Open Tech Strategies, LLC around 2012.

• The many open source anti-surveillance and censorship-circumvention tools supported by
the Open Internet Tools Project (OpenITP.org) and by the Open Technology Institute at
the New America Foundation.

• Checkbook NYC, the municipal financial transparency software released by the New York
City Office of the Comptroller.

• The Arches Project, an open source geospatial web application for inventorying and help-
ing protect cultural heritage sites (e.g., historic buildings, archaeological sites, etc), created
by the Getty Conservation Institute and World Monuments Fund.

• OpenOffice.org / LibreOffice.org, the Berkeley Database from Sleepycat, and MySQL
Database; I have not been involved with these projects personally, but have observed them
and, in some cases, talked to people there.

x

Preface

• Likewise various projects at the Mozilla Corporation, including but not limited to the Fire-
fox web browser.

• GNU Debugger (GDB) (likewise).

• The Debian Project (likewise).

• The Hypothes.is Project (likewise).

This is far from a complete list. Many of the client projects I work with through our consult-
ing practice at Open Tech Strategies, LLC have also influenced this book, and like most open
source programmers, I keep loose tabs on a variety of different projects of interest to me, just
to have a sense of the general state of things. I haven't named all of them here, but they are
mentioned in the text where appropriate.

Acknowledgements

For the first edition (2005)
This book took four times longer to write than I thought it would, and for much of that time
felt rather like a grand piano suspended above my head wherever I went. Without help from
many people, I would not have been able to complete it while staying sane.

Andy Oram, my editor at O'Reilly, was a writer's dream. Aside from knowing the field in-
timately (he suggested many of the topics), he has the rare gift of knowing what one meant
to say and helping one find the right way to say it. It has been an honor to work with him.
Thanks also to Chuck Toporek for steering this proposal to Andy right away.

Brian Fitzpatrick reviewed almost all of the material as I wrote it, which not only made the
book better, but kept me writing when I wanted to be anywhere in the world but in front of
the computer. Ben Collins-Sussman and Mike Pilato also checked up on progress, and were
always happy to discuss — sometimes at length — whatever topic I was trying to cover that
week. They also noticed when I slowed down, and gently nagged when necessary. Thanks,
guys.

Biella Coleman was writing her dissertation at the same time I was writing this book. She
knows what it means to sit down and write every day, and provided an inspiring example as
well as a sympathetic ear. She also has a fascinating anthropologist's-eye view of the free
software movement, giving both ideas and references that I was able use in the book. Alex
Golub — another anthropologist with one foot in the free software world, and also finishing
his dissertation at the same time — was exceptionally supportive early on, which helped a
great deal.

xi

Preface

Micah Anderson somehow never seemed too oppressed by his own writing gig, which was
inspiring in a sick, envy-generating sort of way, but he was ever ready with friendship, con-
versation, and (on at least one occasion) technical support. Thanks, Micah!

Jon Trowbridge and Sander Striker gave both encouragement and concrete help — their
broad experience in free software provided material I couldn't have gotten any other way.

Thanks to Greg Stein not only for friendship and well-timed encouragement, but for show-
ing the Subversion project how important regular code review is in building a programming
community. Thanks also to Brian Behlendorf, who tactfully drummed into our heads the im-
portance of having discussions publicly; I hope that principle is reflected throughout this
book.

Thanks to Benjamin "Mako" Hill and Seth Schoen, for various conversations about free soft-
ware and its politics; to Zack Urlocker and Louis Suarez-Potts for taking time out of their
busy schedules to be interviewed; to Shane on the Slashcode list for allowing his post to be
quoted; and to Haggen So for his enormously helpful comparison of canned hosting sites.

Thanks to Alla Dekhtyar, Polina, and Sonya for their unflagging and patient encourage-
ment. I'm very glad that I will no longer have to end (or rather, try unsuccessfully to end) our
evenings early to go home and work on "The Book."

Thanks to Jack Repenning for friendship, conversation, and a stubborn refusal to ever accept
an easy wrong analysis when a harder right one is available. I hope that some of his long ex-
perience with both software development and the software industry rubbed off on this book.

CollabNet was exceptionally generous in allowing me a flexible schedule to write, and didn't
complain when it went on far longer than originally planned. I don't know all the intricacies
of how management arrives at such decisions, but I suspect Sandhya Klute, and later Mahesh
Murthy, had something to do with it — my thanks to them both.

The entire Subversion development team has been an inspiration for the past five years, and
much of what is in this book I learned from working with them. I won't thank them all by
name here, because there are too many, but I implore any reader who runs into a Subversion
committer to immediately buy that committer the drink of their choice — I certainly plan to.

Many times I ranted to Rachel Scollon about the state of the book; she was always willing
to listen, and somehow managed to make the problems seem smaller than before we talked.
That helped a lot — thanks.

Thanks (again) to Noel Taylor, who must surely have wondered why I wanted to write an-
other book given how much I complained the last time, but whose friendship and leader-
ship of Golosá helped keep music and good fellowship in my life even in the busiest times.
Thanks also to Matthew Dean and Dorothea Samtleben, friends and long-suffering musi-

xii

Preface

cal partners, who were very understanding as my excuses for not practicing piled up. Megan
Jennings was constantly supportive, and genuinely interested in the topic even though it was
unfamiliar to her — a great tonic for an insecure writer. Thanks, pal!

I had four knowledgeable and diligent reviewers for this book: Yoav Shapira, Andrew Stell-
man, Davanum Srinivas, and Ben Hyde. If I had been able to incorporate all of their excel-
lent suggestions, this would be a better book. As it was, time constraints forced me to pick
and choose, but the improvements were still significant. Any errors that remain are entirely
my own.

My parents, Frances and Henry, were wonderfully supportive as always, and as this book is
less technical than the previous one, I hope they'll find it somewhat more readable.

Finally, I would like to thank the dedicatees, Karen Underhill and Jim Blandy. Karen's
friendship and understanding have meant everything to me, not only during the writing of
this book but for the last seven years. I simply would not have finished without her help.
Likewise for Jim, a true friend and a hacker's hacker, who first taught me about free soft-
ware, much as a bird might teach an airplane about flying.

For the second edition (2023)
The acknowledgements for the second edition of this book include more people and, un-
doubtedly, more unintentional omissions. If your name should be here but is not, please ac-
cept my apologies (and let me know, because we can at least fix the online copy).

Andy Oram of O'Reilly Media once again went above and beyond the call of duty as an edi-
tor. He read closely and made many excellent recommendations; his expertise both in expos-
itory writing in general and in open source in particular were apparent in all his comments. I
can't thank him enough, and the book is much improved for his attention.

James Vasile has been my friend and colleague for well over a decade now, yet not a week
goes in which I don't learn something new from him. Despite having a busy job — I know
firsthand, because we're business partners — and young children at home, he unhesitatingly
volunteered to read through the manuscript and provide feedback. Money can't buy that, and
even if it could, I could never afford James. Thanks, pal.

Cecilia Donnelly is both a wonderful friend and was a supremely capable Open Source Spe-
cialist at the Open Tech Strategies office in Chicago. It's a delight to be working with her, as
our clients know too, and her clear thinking and sharp observations have influenced many
parts of this book.

Karen Sandler has been unfailingly supportive, and provided thoughtful and patient discus-
sion about many of the topics (and even some of the specific examples) in this book. As with

xiii

Preface

James, I usually learn something from Karen when we talk about free software, and when we
talk about other things too.

Bradley Kuhn's name appears several times in the commit logs for this book, because he pro-
vided highly expert feedback on multiple occasions, in one case practically writing the patch
himself. As I wrote in the log message for one of the commits, he is someone "whose contri-
butions to free software have been immeasurable and whose dedication to our shared cause is
a constant inspiration".

Karen and Bradley both work at the Software Freedom Conservancy (https://sfconservan-
cy.org/). If you like this book and you want to help free software, donating to the Conservan-
cy is a fine first step. It's also a fine second step.

Ben Reser provided a super-detailed and expert review of Chapters 6 and 7 that resulted in
many improvements. Ben, thank you so much.

Michael Bernstein not only provided some detailed feedback during the interregnum between
the first and second editions, he also helped a lot with organizing the Kickstarter campaign
that made the latter possible. Thank you, Michael.

Danese Cooper always keeps me on my toes, and in particular brought me the message
(which I was not at first willing to hear) that innersourcing can work as a means of helping
organizations learn open source practices and eventually produce open source software them-
selves. Thanks for that, Danese, and much else.

Between the two editions, I spent a very educational stretch of time working at O'Reilly Me-
dia, Code for America / Civic Commons (while ensconced in the Open Plans office in New
York City, thanks to their very kind offer of desk space), and the New America Founda-
tion as Open Internet Tools Project Fellow. Much of what I learned through that work end-
ed up in the book, and in addition to the organizations themselves I thank Tim O'Reilly, Jen
Pahlka, Andrew McLaughlin, Philip Ashlock, Abhi Nemani, Nick Grossman, Chris Holmes,
Frank Hebbert, and Andrew Hoppin for the ideas and perspectives they shared.

Sumana Harihareswara and Leonard Richardson have given frank and helpful commentary
about various open source goings-on over the years; the book is better for their input, and I
am the better for their friendship.

Eben Moglen at the Software Freedom Law Center (https://softwarefreedom.org/) taught me
a lot about how to look at free software as a large-scale social and economic phenomenon,
and about how companies view free software. He also provided a private working space on a
few occasions when it really made a difference. Thank you, Eben.

I do not understand how Dr. David A. Wheeler makes time to answer my occasional ques-
tions when he is in demand from so many other people as well, but he does, and his answers
are always spot-on and authoritative. Thanks as always, David.

xiv

https://sfconservancy.org/
https://sfconservancy.org/
https://softwarefreedom.org/

Preface

Breena Xie's interest in open source led swiftly to trenchant questions about it. Those ques-
tions were helpful to me in thinking through certain topics in the book, but so was her pa-
tience on those occasions when the book demanded more time than it should have (by which
I mean "than I said it would"). Thank you, Breena.

Many thanks to Radhir Kothuri and the rest of the HackIllinois 2017 crew, who provided a
very timely motivational boost when they proposed doing a print run of the new edition for
their event at the University of Illinois at Urbana-Champaign, Illinois in February 2017. I
appreciate the vote of confidence in the book, and hope the HackIllinois attendees will be
pleased with the results.

Camille Bégnis of http://neodoc.biz/ provided expert DocBook help in real time one day,
solving a long-standing technical problem in the online version of the book that I'd been un-
able to fix for years. Merci beaucoup, Camille.

My friend Jason A. Owen also provided timely and wonderfully thorough help with some
DocBook formatting issues and with the build process, and is the reason it is now possible
to generate PDFs of this book suitable for printing on different page sizes. Independently of
that, Jason has been a valued collaborator on many open source projects, and raises standards
wherever he's involved. Thank you, Jason.

Near the end of the preparation of the second edition, I realized that the text badly needed a
complete read-through, for typos of the sort that can't easily be caught by automated means,
and for various expressive infelicities that I knew had crept in but couldn't detect myself.
Corin Duey undertook this task with good cheer and magnificent attention to detail, and the
book is noticeably improved as a result. Corin, thank you so much.

The hardest part of these acknowledgements is realizing there will never be enough space
to do justice to all the knowledge people have shared in the decade and a half since the first
edition came out. I've been working in open source the whole time since then, and have had
illuminating conversations with many clients, partners, interviewees, expert consultants,
and fellow travelers; some of them have occasionally sent in concrete improvements to the
book, too. I can't imagine what this new edition would be without the benefit of that collec-
tive mind, and will try to list some of those people below. I'm sure the list is incomplete, and
I apologize for that. For what it's worth, I used a program to randomize the order, and accept-
ed its first output:

Nithya Ruff, Jenn Brandel, Joseph Lorenzo Hall, Ben Wyss, Kit Plummer, Mark Atwood,
Vivien Deparday, Sebastian Benthall, Martin Michlmayr, Derek Eder, Hyrum Wright, Ste-
fano Zacchiroli, Dan Risacher, Stephen Walli, Simon Phipps, Francis Ghesquiere, Sanjay
Patil, Tony Sebro, Matt Doar, Deb Nicholson, Jon Phillips, David Robinson, Nathan Toone,
Alolita Sharma, Jim McGowan, Florian Effenberger, Brian Warner, Cathy Deng, Allison
Randal, Ariel Núñez, Jeremy Allison, Thorsten Behrens, Deb Bryant, Zaheda Bhorat, Hol-

xv

http://neodoc.biz/

Preface

ly St. Clair, Jeff Ubois, Dustin Mitchell, Dan Schultz, Luis Villa, Jon Scott, Dave Neary,
Mike Milinkovich, Wolf Peuker, Paul Holland, Keith Casey, Christian Spanring, Bishwa
Pandey, Scott Goodwin, Vivek Vaidya, David Eaves, Ed Sokolowski, Chris Aniszczyk,
David Hemphill, Emma Jane Hogbin Westby, Ben Sheldon, Guy Martin, Michael Downey,
Charles-H. Schulz, Vitorio Miliano, Paul Biondich, Richard Fontana, Philip Olson, Leslie
Hawthorn, Harlan Yu, Gerard Braad, Daniel Shahaf, Matthew Turk, Mike Hostetler, Wal-
do Jaquith, Jeffrey Johnson, Eitan Adler, Mike Linksvayer, Smiljana Antonijevic, Brian Ak-
er, Ben Balter, Conan Reis, Dave Crossland, Nicole Boone, Brandon Keepers, Leigh Honey-
well, Tom "spot" Callaway, Andy Dearing, Scott Clark, Tina Coleman, William A Rowe Jr.,
Matthew McCullough, Stuart Gill, Robert Soden, Chris Tucker, Noel Hidalgo, Mark Galas-
si, Chris DiBona, Gerhard Poul, Christopher Whitaker, James Tauber, Justin Kestelyn, Nadia
Eghbal, Mel Chua, Tony Wasserman, Robert Douglass, Simone Dalmasso, John O'Nolan,
Tom Marble, Patrick Masson, Arfon Smith, Forest Gregg, and Molly de Blanc.

The 2nd edition rewrite was funded through a Kickstarter campaign. The response to that
campaign was swift and generous, and I'm immensely grateful to all the people who pledged.
I hope they will forgive me for taking almost four times longer than expected to finish the re-
visions. Every backer of the campaign is acknowledged below, using the name they provided
via Kickstarter. The list is in either ascending or descending order by pledge size, but I'm not
going to say which, because a little mystery should be retained in these matters:

Pablo, Cameron Colby Thomson, Bethany Sumner, Michael Lefevre, Maxim Novak, Adrian
Smith, Jonathan Corwin, Laurie Voss, James Williams, Chris Knadler, Zael, Kieran Math-
ieson, Teresa Gonczy, Poramate Minsiri, j. faceless user, Michael, Isaac Davis aka Hedron
A. Davis, James Dearing, Kyle Simpson, Laura Dragan, Hilary Mason, Tom Smith, Michael
Massie, Erin Marchak, Micke Nordin, Xavier Antoviaque, Michael Dudley, Raisa, Paul
Booker, Jack Moffitt, Aaron Shaw, maurine stenwick, Ivan Habunek, G. Carter Stokum,
Barry Solow, mooware, Harish Pillay, Jim Randall, Holger S., Alan Joseph Williams, Erik
Michaels-Ober, David Parker, Nick, Niko Felger, Fred Trotter, Dorai Thodla, William
Theaker, Hans Bakker, Brad, Bastien Guerry, Miles Fidelman, Grant Landram, Michael
Rogers, mostsignificantbit, Olivier Berger, Fernando Masanori Ashikaga, Naomi Golden-
son, Brian Fitzpatrick, Eric Burns, Mark V. Albert, micah altman, Richard Valencia, Cody
Bartlett Heisinger, Nick Grossman, cgoldberg, Mike Linksvayer, Simon Phipps, Yoshi-
nari Takaoka, Christian Spanring, Ross M Karchner, Martin Karlsson, Kaia Dekker, Nóirín
Plunkett, Emma Jane, Helior Colorado, Fred Benenson, George V. Reilly, Lydia Pintsch-
er, Noel Hidalgo, Albert White, Keng Susumpow, Mattias Wingstedt, Chris Cornutt, Zak
Greant, Jessy Kate Schingler, James Duncan Davidson, Chris DiBona, Daniel Latorre, Jere-
miah Lee Cohick, Jannis Leidel, Chris Streeter, Leonard Richardson, Terry Suitor, Trevor
Bramble, Bertrand Delacretaz, John Sykora, Bill Kendrick, Emmanuel Seyman, Paolo
Mottadelli, Gabriel Burt, Adrian Warman, Steve Lee, Andrew Nacin, Chris Ballance, Ben
Karel, Lance Pollard, richardj, Brian Land, Jonathan Markow, Kat Walsh, Jason Orendorff,
Jim Garrison, Jared Smith, Sander van der Waal, Karen Sandler, Matt Lee, John Morton,

xvi

Preface

Frank Warmerdam, Michael R. Bernstein, John Yuda, Jack Repenning, Jonathan Sick, Nas-
er Sharifi, Cornelius Schumacher, Yao-Ting Wu, Camille Acey, Greg Grossmeier, Zooko
Wilcox-O'Hearn, Joe, Anne Gentle, Mark Jaquith, Ted Gould, James Schumann, Falkvinge,
Schuyler Erle, Gordon Fyodor Lyon, Tony Meyer, Salvador Torres, Dustin J. Mitchell,
Lindy Klein, Dave Stanton, Floyd DCosta, Agog Labs, Adrià Mercader, KIMURA Wataru,
Paul Cooper, alexML, Stefan Heinz, maiki, BjornW, Matt Soar, Mick Thompson, mfks,
Sebastian Bergmann, Michael Haggerty, Stefan Eggers, Veronica Vergara, Bradley Kuhn,
Justin Tallant, dietrich ayala, Nat Torkington, David Jeanmonod, Randy Metcalfe, Daniel
Kahn Gillmor, George Chamales, Erik Möller, Tim Schumacher, Koichi Kimura, Vanessa
Hurst, Daniel Shahaf, Stefan Sperling, Gunnar Hellekson, Denver Gingerich, Iliana Weller,
adam820, Garance Drosehn, Philip Olson, Matt Doar, Brian Jepson, J Aaron Farr, Mike Nos-
al, Kevin Hall, Eric Sinclair, Alex Rudnick, Jim Brucker, PEI-HAN LEE, Michael Novak,
Anthony Ferrara, Dan Scott, Russell Nelson, Frank Wiles, Alex Gaynor, Julian Krause, ter-
mie, Joel McGrady, Christian Fletcher Smith, Mel Chua, William Goff, Tom Liesenfeld,
Roland Tanglao, Ross Gardler, Gervase Markham, Ingo Renner, Rochelle Lodder, Charles
Adler, Dave Hylands, Daryn Nakhuda, Francois Marier, Kendric Evans, Greg Price, Car-
los Martín Nieto, Greg Stein, Glen Ivey, Jason Ray, Ben Ubois, Landon Jones, Jason Sper-
ber, Brian Ford, Todd Nienkerk, Keith Casey, Leigh Honeywell, Aaron Jorbin, Christoph
Hochstrasser, Miguel Ponce de Leon, Dave Neary, Eric Lawrence, Dirk Haun, Brian Burg,
Brandon Kraft, Praveen Sinha, ML Cohen, Christie Koehler, Ethan Jucovy, Lawrence S
Kemp, Justin Sheehy, Jonathan Polirer, Ronan Barzic, Greg Dunlap, Darcy Casselman, Je-
remy G Kahn, Sam Moffatt, James Vasile, Simon Fondrie-Teitler, Mario Peshev, Alison
Foxall, Jim Blandy, Brandon Satrom, Viktor Ekmark, Tor Helmer, Jeff Ubois, Gabriela Ro-
driguez, James Tait, Michael Parker, Stacy Uden, Peter Martin, Amy Stephen, James Tauber,
Cameron Goodale, Jessica, Ben Sheldon, Forest Gregg, Ken McAuliffe, Marta Rybczynska,
Sean Taylor, John Genego, Meeuw, Mark MacLennan, Kennis Koldewyn, Igor Gali#, Hen-
rik Dahlström, Jorren Schauwaert, Masahiro Takagi, Ben Collins-Sussman, Decklin Foster,
Étienne Savard, Fabio Kon, Ole-Morten Duesund, Michael Downey, Jacob Kaplan-Moss,
Nicola Jordan, Ian Sullivan, Roger W Turner, Justin Erenkrantz, Isaac Christoffersen, Deb-
orah Bryant, Christopher Manning, Luis Villa, Judicaël Courant, Leslie Hawthorn, Mark
R. Hinkle, Danese Cooper, Michael Tiemann, Robert M. Lefkowitz, Todd Larsen, T Foote,
Ben Reser, Dave Camp, Scott Berkun, Garrett Rooney, Dinyar Rabady, Damien Wyart, Seth
Schoen, Rob Brackett, Aisha, Winnie Fung, Donald A. Lobo, Dan Robles, Django Software
Foundation, Mark Atwood, Krux Digital, Stephen Walli, Dave Crossland, Tina, and Thorsten
Behrens.

Thank you all.

Disclaimer
The thoughts and opinions expressed in this book are my own. They do not necessarily rep-
resent the views of clients, past employers, partners, or the open source projects discussed

xvii

Preface

herein. Any errors that remain despite the efforts of the people mentioned in the acknowl-
edgements are my own as well.

xviii

Chapter 1. Introduction
Free software — open source software1 — has become the backbone of modern information
technology. It runs on your phone, on your laptop and desktop computers, and in embedded
microcontrollers for household appliances, automobiles, industrial machinery and countless
other devices that we too often forget even have software. Open source is especially preva-
lent on the servers that provide online services on the Internet. Every time you send an email,
visit a web site, or call up some information on your smartphone, a significant portion of the
activity is handled by open source software.

Yet it is also largely invisible, even to many of the people who work in technology. Open
source's nature is to fade into the background and go unnoticed2 except by those whose work
touches it directly. It is the oxygen of computing. We all breathe, but few of us stop to think
about where the air comes from.

If you've read this far, though, you're already one of the people who wonders where the oxy-
gen comes from, and probably want to create some yourself.

This book will examine not only how to do open source right, but how to do it wrong, so you
can recognize and correct problems early. My hope is that after reading it, you will have a
repertory of techniques not just for avoiding common pitfalls, but for dealing with the growth
and maintenance of a successful project. Success is not a zero-sum game, and this book is
not about winning or getting ahead of the competition. Indeed, an important part of running
an open source project is working smoothly with other, related projects. In the long run,
every successful project contributes to the well-being of the overall, worldwide body of free
software.

It would be tempting to say that when free software projects fail, they do so for the same
sorts of reasons proprietary software projects do. Certainly, free software has no monopoly
on unrealistic requirements, vague specifications, poor staff management, ignoring user feed-
back, or any of the other hobgoblins already well known to the software industry. There is a
huge body of writing on these topics, and I will try not to duplicate it in this book. Instead, I
will attempt to describe the problems peculiar to free software. When a free software project
runs aground, it is often because the participants did not appreciate the unique problems of
open source software development, even though they might be quite well-prepared for the fa-
miliar difficulties that afflict software development generally.

1The terms are synonymous, as mentioned in the Preface [viii]. See the section called “"Free" Versus "Open
Source"” [10] for more.
2See "Spot The Pattern: Commoditization", by James Vasile, at https://blog.opentechstrategies.com/2019/10/commoditi-
zation/

1

https://blog.opentechstrategies.com/2019/10/commoditization/
https://blog.opentechstrategies.com/2019/10/commoditization/

Introduction

One of the most common mistakes is unrealistic expectations about the benefits of open
source itself. An open license does not guarantee that hordes of active developers will sud-
denly devote their time to your project, nor does open-sourcing a troubled project automati-
cally cure its ills. In fact, quite the opposite: opening up a project can add whole new sets of
complexities, and cost more in the short term than simply keeping it in-house.3

Opening up means arranging the code to be comprehensible to complete strangers, writing
development documentation, and setting discussion forums and other collaboration tools
(this is discussed in more detail in Chapter 3, Technical Infrastructure [51]).

All of this is work, and is pure overhead at first. If any interested developers do show up,
there is the added burden of answering their questions for a while before seeing any benefit
from their presence. As developer Jamie Zawinski said about the troubled early days of the
Mozilla project:

Open source does work, but it is most definitely not a panacea. If there's
a cautionary tale here, it is that you can't take a dying project, sprinkle it
with the magic pixie dust of "open source," and have everything magically
work out. Software is hard. The issues aren't that simple.

(from https://www.jwz.org/gruntle/nomo.html)

A related mistake is that of skimping on presentation and packaging, figuring that these can
always be done later, when the project is well under way. Presentation and packaging com-
prise a wide range of tasks, all revolving around the theme of clearing away distractions and
cognitive barriers for newcomers — reducing the amount of work they need to do to get
from wherever they are to "the next step" of engagement. The web site has to look good, the
software's compilation, packaging, and installation should be as automated as possible, etc.

Many programmers unfortunately treat this kind of work as being of secondary importance to
the code itself. There are a couple of reasons for this. First, it can feel like busywork, because
its benefits are most visible to those least familiar with the project — and vice versa: after
all, the people who develop the code don't really need the packaging. They already know
how to install, administer, and use the software, because they wrote it. Second, the skills re-
quired to do presentation and packaging well are often completely different from those re-
quired to write code. People tend to focus on what they're good at, even if it might serve
the project better to spend a little time on something that suits them less. Chapter 2, Getting

3In 2018 my partner James Vasile and I worked with the Mozilla Corporation on some research that eventually became
the report Open Source Archetypes: A Framework For Purposeful Open Source (https://opentechstrategies.com/arche-
types). That research and resultant report have been very helpful to us (and, so we hear, to others) in thinking about the
strategic use of open source to achieve larger organizational purposes. If you think that might be useful to you, then take
a look at the report. Since this book is not about those kinds of strategy questions per se, I don't discuss the archetypes
much here. However, they may be useful to you, in conjunction with this book, if the questions you're trying to answer
are not only about how to run a successful open source project but about why to do so in the first place.

2

https://www.jwz.org/gruntle/nomo.html
https://opentechstrategies.com/archetypes
https://opentechstrategies.com/archetypes

Introduction

Started [15] discusses presentation and packaging in detail, and explains why it's crucial
that they be a priority from the very start of the project.

Next comes the fallacy that little or no project management is required in open source, or
conversely, that the same management practices used for in-house development will work
equally well on an open source project.

Management in an open source project isn't always very visible, but in the successful
projects it's usually happening behind the scenes in some form or another. A small thought
experiment suffices to show why. An open source project consists of a random collection
of programmers — already a notoriously independent-minded species — who have most
likely never met each other, and who may each have different personal goals in working
on the project. The thought experiment is simply to imagine what would happen to such a
group without management. Barring miracles, it would collapse or drift apart very quickly.
Things won't simply run themselves, much as we might wish otherwise. But the manage-
ment, though it may be quite active, is often informal and subtle. The only thing keeping an
open source development group together is their shared belief that they can do more in con-
cert than individually. Thus the goal of management is mostly to ensure that they continue
to believe this, by setting standards for communications, by making sure useful developers
don't get marginalized due to personal idiosyncrasies, and in general by making the project
a place developers want to keep coming back to. Specific techniques for doing this are dis-
cussed throughout the rest of this book.

Finally, there is a general category of problems that may be called "failures of cultural navi-
gation." Twenty years ago, even ten, it would have been premature to talk about a global cul-
ture of free software, but not anymore. A recognizable culture has slowly emerged, and while
it is certainly not monolithic — it is at least as prone to internal dissent and factionalism as
any geographically bound culture — it does have a basically consistent core. Most success-
ful open source projects exhibit some or all of the characteristics of this core. They reward
certain types of behaviors and punish others; they create an atmosphere that encourages un-
planned participation, sometimes at the expense of central coordination; they have concepts
of rudeness and politeness that can differ substantially from those prevalent elsewhere. Most
importantly, longtime participants have generally internalized these standards, so that they
share a rough consensus about expected conduct. Unsuccessful projects usually deviate in
significant ways from this core, albeit unintentionally, and often do not have a consensus
about what constitutes reasonable default behavior. This means that when problems arise, the
situation can quickly deteriorate, as the participants lack an already established stock of cul-
tural reflexes to fall back on for resolving differences.

That last category, failures of cultural navigation, includes an interesting phenomenon: cer-
tain types of organizations are structurally less compatible with open source development
than others. One of the great surprises for me in preparing the second edition of this book
was realizing that, on the whole, experience indicates that governments are less suited to par-

3

Introduction

ticipating in free software projects than for-profit corporations are, with non-profits some-
where in between the two. There are many reasons for this (see the section called “Govern-
ments and Open Source” [121]), and the problems are certainly surmountable, but it's
worth noting that when an existing organization — particularly a hierarchical one, and par-
ticularly a hierarchical, risk-averse, and publicity-sensitive one — starts or joins an open
source project, the organization will usually have to make some adjustments.

The extra effort required to run a project as open source instead of closed is not great, but
the effort is most noticeable right at the beginning. What's less noticeable at the beginning
are the benefits, which are considerable and which become clearer as the project progress-
es. There is the deep personal satisfaction it gives developers, of course: the pleasure of do-
ing one's work in the open, able to appreciate and be appreciated by one's peers. It is no ac-
cident that many open source developers continue to stay active on the same projects — as
part of their job — even after changing employers. But there are also significant organiza-
tional benefits: the open source projects your organization participates in are a membrane
through which your managers and developers are regularly exposed to people and ideas out-
side your organizational hierarchy. It's like having the benefits of attending a conference, but
while still getting daily work done and without incurring travel expenses.4 In a successful
open source project, these benefits, once they start arriving, greatly outweigh the costs.

This book is a practical guide, not an anthropological study or a history. However, a working
knowledge of the origins of today's free software culture is an essential foundation for any
practical advice. A person who understands the culture can travel far and wide in the open
source world, encountering many local variations in custom and dialect, yet still be able to
participate comfortably and effectively everywhere. In contrast, a person who does not un-
derstand the culture will find the process of organizing or participating in a project difficult
and full of surprises. Since the number of people developing free software continues to grow,
there are many people in that latter category — this is largely a culture of recent immigrants,
and will continue to be so for some time. If you think you might be one of them, the next
section provides background for discussions you'll encounter later, both in this book and on
the Internet. (On the other hand, if you've been working with open source for a while, you
may already know a lot of its history, so feel free to skip the next section.)

History
Software sharing has been around as long as software itself. In the early days of computers,
manufacturers felt that competitive advantages were to be had mainly in hardware innova-
tion, and therefore didn't pay much attention to software as a business asset. Many of the cus-
tomers for these early machines were scientists or technicians, who were able to modify and

4Of course, it's still a good idea for them to attend real conferences once in a while too; see the section called “Meeting
In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats” [248].

4

Introduction

extend the software shipped with the machine themselves. Customers sometimes distributed
their patches back not only to the manufacturer, but to other owners of similar machines. The
manufacturers often tolerated and even encouraged this: in their eyes, improvements to the
software, from whatever source, just made the hardware more attractive to other potential
customers.

Although this early period resembled today's free software culture in many ways, it differed
in two crucial respects. First, there was as yet little standardization of hardware — it was a
time of flourishing innovation in computer design, but the diversity of computing architec-
tures meant that everything was incompatible with everything else. Software written for one
machine would generally not work on another; programmers tended to acquire expertise in a
particular architecture or family of architectures (whereas today they would be more likely to
acquire expertise in a programming language or family of languages, confident that their ex-
pertise will be transferable to whatever computing hardware they happen to find themselves
working with). Because a person's expertise tended to be specific to one kind of computer,
their accumulation of expertise had the effect of making that particular architecture computer
more attractive to them and their colleagues. It was therefore in the manufacturer's interests
for machine-specific code and knowledge to spread as widely as possible.

Second, there was no widespread Internet. Though there were fewer legal restrictions on
sharing than there are today, the technical restrictions were greater: the means of getting da-
ta from place to place were inconvenient and cumbersome, relatively speaking. There were
some small, local networks, good for sharing information among employees at the same lab
or company. But there remained barriers to overcome if one wanted to share with the world.
These barriers were overcome in many cases. Sometimes different groups made contact with
each other independently, sending disks or tapes through land mail, and sometimes the man-
ufacturers themselves served as central clearing houses for patches. It also helped that many
of the early computer developers worked at universities, where publishing one's knowledge
was expected. But the physical realities of data transmission meant there was always an im-
pedance to sharing, an impedance proportional to the distance (real or organizational) that
the software had to travel. Widespread, frictionless sharing, as we know it today, was not
possible.

The Rise of Proprietary Software and Free
Software

As the industry matured, several interrelated changes occurred simultaneously. The wild di-
versity of hardware designs gradually gave way to a few clear winners — winners through
superior technology, superior marketing, or some combination of the two. At the same time,
and not entirely coincidentally, the development of so-called "high level" programming lan-
guages meant that one could write a program once, in one language, and have it automati-

5

Introduction

cally translated ("compiled") to run on different kinds of computers. The implications of this
were not lost on the hardware manufacturers: a customer could now undertake a major soft-
ware engineering effort without necessarily locking themselves into one particular comput-
er architecture. When this was combined with the gradual narrowing of performance differ-
ences between various computers, as the less efficient designs were weeded out, a manufac-
turer that treated its hardware as its only asset could look forward to a future of declining
profit margins. Raw computing power was becoming a fungible good, while software was
becoming the differentiator. Selling software, or at least treating it as an integral part of hard-
ware sales, began to look like a good strategy.

This meant that manufacturers had to start enforcing the copyrights on their code more strict-
ly. If users simply continued to share and modify code freely among themselves, they might
independently reimplement some of the improvements now being sold as "added value" by
the supplier. Worse, shared code could get into the hands of competitors. The irony is that all
this was happening around the time the Internet was getting off the ground. So just when tru-
ly unobstructed software sharing was finally becoming technically possible, changes in the
computer business made it economically undesirable, at least from the point of view of any
single company. The suppliers clamped down, either denying users access to the code that
ran their machines, or insisting on non-disclosure agreements that made effective sharing im-
possible.

Conscious Resistance
As the world of unrestricted code swapping slowly faded away, a counterreaction crystal-
lized in the mind of at least one programmer. Richard Stallman worked in the Artificial Intel-
ligence Lab at the Massachusetts Institute of Technology in the 1970s and early '80s, during
what turned out to be a golden age and a golden location for code sharing. The AI Lab had a
strong "hacker ethic",5 and people were not only encouraged but expected to share whatever
improvements they made to the system. As Stallman wrote later:

We did not call our software "free software", because that term did not yet
exist; but that is what it was. Whenever people from another university or
a company wanted to port and use a program, we gladly let them. If you
saw someone using an unfamiliar and interesting program, you could al-
ways ask to see the source code, so that you could read it, change it, or
cannibalize parts of it to make a new program.

(from https://www.gnu.org/gnu/thegnuproject.html)

This Edenic community collapsed around Stallman shortly after 1980, when the changes that
had been happening in the rest of the industry finally caught up with the AI Lab. A startup

5Stallman uses the word "hacker" in the sense of "someone who loves to program and enjoys being clever about it," not
the somewhat newer meaning of "someone who breaks into computers."

6

https://www.gnu.org/gnu/thegnuproject.html

Introduction

company hired away many of the Lab's programmers to work on an operating system simi-
lar to what they had been working on at the Lab, only now under an exclusive license. At the
same time, the AI Lab acquired new equipment that came with a proprietary operating sys-
tem.

Stallman saw the larger pattern in what was happening:

The modern computers of the era, such as the VAX or the 68020, had their
own operating systems, but none of them were free software: you had to
sign a nondisclosure agreement even to get an executable copy.

This meant that the first step in using a computer was to promise not to
help your neighbor. A cooperating community was forbidden. The rule
made by the owners of proprietary software was, "If you share with your
neighbor, you are a pirate. If you want any changes, beg us to make them."

By some quirk of personality, he decided to resist the trend. Instead of continuing to work at
the now-decimated AI Lab, or taking a job writing code at one of the new companies, where
the results of his work would be kept locked in a box, he resigned from the Lab and started
the GNU Project and the Free Software Foundation (FSF). The goal of GNU6 was to devel-
op a completely free and open computer operating system and body of application software,
in which users would never be prevented from hacking or from sharing their modifications.
He was, in essence, setting out to recreate what had been destroyed at the AI Lab, but on a
world-wide scale and without the vulnerabilities that had made the AI Lab's culture suscepti-
ble to disintegration.

In addition to working on the new operating system, Stallman devised a copyright license
whose terms guaranteed that his code would be perpetually free. The GNU General Public
License (GPL) is a clever piece of legal judo: it says that the code may be copied and mod-
ified without restriction, and that both copies and derivative works (i.e., modified versions)
must, if they are distributed at all, be distributed under the same license as the original, with
no additional restrictions.

In effect, the GPL uses copyright law to achieve an effect opposite to that of traditional copy-
right: instead of limiting the software's distribution, it prevents anyone, even the author, from
limiting distribution. For Stallman, this was better than simply putting his code into the pub-
lic domain. If it were in the public domain, any particular copy of it could be incorporated
into a proprietary program (as also sometimes happens to code under non-reciprocal7 open

6It stands for "GNU's Not Unix", and the "GNU" in that expansion stands for an infinitely long footnote.
7See the section called “Terminology” [272] for more about "non-reciprocal" licensing versus GPL-style "reciprocal"
or "copyleft" licensing. The opensource.org FAQ is also a good resource on this — see https://opensource.org/faq#copy-
left.

7

https://opensource.org/faq#copyleft
https://opensource.org/faq#copyleft

Introduction

source copyright licenses). While such incorporation wouldn't in any way diminish the orig-
inal code's continued availability, it would have meant that Stallman's efforts could benefit
the enemy — proprietary software. The GPL can be thought of as a form of protectionism
for free software, because it prevents non-free software from taking full advantage of GPLed
code. The GPL and its relationship to other free software licenses are discussed in detail in
Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents [272].

With the help of many programmers, some of whom shared Stallman's ideology and some
of whom simply wanted to see a lot of free code available, the GNU Project began releasing
free replacements for many of the most critical components of an operating system. Because
of the now-widespread standardization in computer hardware and software, it was possible to
use the GNU replacements on otherwise non-free systems, and many people did. The GNU
text editor (Emacs) and C compiler (GCC) were particularly successful, gaining large and
loyal followings not on ideological grounds, but simply on their technical merits. By about
1990, GNU had produced most of a free operating system, except for the kernel — the part
that the machine actually boots up and is responsible for managing memory, disk, and other
system resources.

Unfortunately, the GNU project had chosen a kernel design that turned out to be harder to
implement than expected. The ensuing delay prevented the Free Software Foundation from
making the first release of an entirely free operating system. The final piece was put into
place instead by Linus Torvalds, a Finnish computer science student who, with the help of
developers around the world, had completed a free kernel using a more conservative design.
He named it Linux, and when it was combined with the existing GNU programs and other
free software (especially the X Windows System), the result was a completely free operating
system. For the first time, you could boot up your computer and do work without using any
proprietary software.8

Much of the software on this new operating system was not produced by the GNU project. In
fact, GNU wasn't even the only group working on producing a free operating system (for ex-
ample, the code that eventually became NetBSD and FreeBSD was already under develop-
ment by this time). The importance of the Free Software Foundation was not only in the code
they wrote, but in their political rhetoric. By talking about free software as a cause instead
of a convenience, they made it difficult for programmers not to have a political conscious-
ness about it. Even those who disagreed with the FSF had to engage the issue, if only to stake
out a different position. The FSF's effectiveness as propagandists lay in tying their code to
a message, by means of the GPL and other texts. As their code spread widely, that message
spread as well.

8Technically, Linux was not the first. A free operating system for IBM-compatible computers, called 386BSD, had come
out shortly before Linux. However, it was a lot harder to get 386BSD up and running. Linux made such a splash not only
because it was free, but because it actually had a high chance of successfully booting your computer after you installed
it.

8

Introduction

Accidental Resistance

There were many other things going on in the nascent free software scene, however, and not
all were as explicitly ideological as Stallman's GNU Project. One of the most important was
the Berkeley Software Distribution (BSD), a gradual re-implementation of the Unix operat-
ing system — which up until the late 1970's had been a loosely proprietary research project
at AT&T — by programmers at the University of California at Berkeley. The BSD group
did not make any overt political statements about the need for programmers to band togeth-
er and share with one another, but they practiced the idea with flair and enthusiasm, by co-
ordinating a massive distributed development effort in which the Unix command-line utili-
ties and code libraries, and eventually the operating system kernel itself, were rewritten from
scratch mostly by volunteers. The BSD project became an early example of non-ideological
free software development, and also served as a training ground for many developers who
would go on to remain active in the open source world.

Another crucible of cooperative development was the X Window System, a free, net-
work-transparent graphical computing environment, developed at MIT in the mid-1980's in
partnership with hardware vendors who had a common interest in being able to offer their
customers a windowing system. Far from opposing proprietary software, the X license de-
liberately allowed proprietary extensions on top of the free core — each member of the con-
sortium wanted the chance to enhance the default X distribution, and thereby gain a competi-
tive advantage over the other members. X Windows9 itself was free software, but mainly as a
way to level the playing field between competing business interests and to increase standard-
ization, not out of some desire to end the dominance of proprietary software.

Yet another example, predating the GNU project by a few years, was TeX, Donald Knuth's
free, publishing-quality typesetting system. He released it under terms that allowed anyone to
modify and distribute the code, but not to call the result "TeX" unless it passed a very strict
set of compatibility tests (this is an example of the "trademark-protecting" class of free li-
censes, discussed more in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and
Patents [272]). Knuth wasn't taking a stand one way or the other on the question of free-
versus-proprietary software; he just needed a better typesetting system in order to complete
his real goal — a book on computer programming — and saw no reason not to release his
system to the world when done.

Without listing every project and every license, it's safe to say that by the late 1980's, there
was a lot of free software available under a wide variety of licenses. The diversity of licens-
es reflected a corresponding diversity of motivations. Even some of the programmers who
chose the GNU GPL were much less ideologically driven than the GNU project itself was.
Although they enjoyed working on free software, many developers did not consider propri-
etary software a social evil. There were people who felt a moral impulse to rid the world of

9They prefer it to be called the "X Window System", but in practice, people usually call it "X Windows".

9

Introduction

"software hoarding" (Stallman's term for non-free software), but others were motivated more
by technical excitement, or by the pleasure of working with like-minded collaborators, or
even by a simple human desire for glory. Yet by and large these disparate motivations did
not interact in destructive ways. This may be because software, unlike other creative forms
like prose or the visual arts, must pass semi-objective tests in order to be considered success-
ful: it must run, and be reasonably free of bugs. This gives all participants in a project a kind
of automatic common ground, a reason and a framework for working together without wor-
rying too much about qualifications or motivations beyond the technical.

Developers had another reason to stick together as well: it turned out that the free software
world was producing some very high-quality code. In some cases, it was demonstrably tech-
nically superior to the nearest non-free alternative; in others, it was at least comparable, and
of course it always cost less to acquire — and you didn't have to worry about the manufac-
turer going out of business. While only a few people might have been motivated to run free
software on strictly philosophical grounds, a great many people were happy to run it because
it did a better job. And of those who used it, some percentage were always willing to donate
their time and skills to help maintain and improve the software.

This tendency to produce good code was certainly not universal, but it was happening with
increasing frequency in free software projects around the world. Businesses that depended
heavily on software gradually began to take notice. Many of them discovered that they were
already using free software in day-to-day operations, and simply hadn't known it (upper man-
agement isn't always aware of everything the developers and the IT department do). Cor-
porations began to take a more active and public role in free software projects, contributing
time and equipment, and sometimes even directly funding the development of free programs.
Such investments could, in the best scenarios, repay themselves many times over. The spon-
sor only pays a small number of expert programmers to devote themselves to the project full
time, but reaps the benefits of everyone's contributions, including work from programmers
being paid by other corporations and from volunteers who have their own disparate motiva-
tions.

"Free" Versus "Open Source"
As the corporate world gave more and more attention to free software, programmers were
faced with new issues of public presentation. One was the word "free" itself. On first hearing
the term "free software" many people mistakenly think it means just "zero-cost software."
It's true that all free software is zero-cost,10 but not all zero-cost software is free as in "free-
dom" — that is, the freedom to share and modify for any purpose. For example, during the
battle of the browsers in the 1990s, both Netscape and Microsoft gave away their competing

10One may charge a fee for giving out copies of free software, but since one cannot stop the recipients from offering it at
no charge afterwards, the price is effectively driven to zero immediately.

10

Introduction

web browsers at no charge, in a scramble to gain market share. Neither browser was free in
the "free software" sense. You couldn't get the source code, and even if you could, you didn't
have the right to modify or redistribute it.11 The only thing you could do was download an
executable and run it. The browsers were no more free than shrink-wrapped software bought
in a store; they merely had a lower price.

This confusion over the word "free" is due entirely to an unfortunate ambiguity in the Eng-
lish language. Most other tongues distinguish low prices from liberty (the distinction be-
tween gratis and libre is immediately clear to speakers of Romance languages, for example).
But English's position as the de facto bridge language of the Internet means that a problem
with English is, to some degree, a problem for everyone. The misunderstanding around the
word "free" was so prevalent that free software programmers eventually evolved a standard
formula in response: "It's free as in freedom — think free speech, not free beer." Still, having
to explain it over and over is tiring. Many programmers felt, with some justification, that the
ambiguous word "free" was hampering the public's understanding of this software.

But the problem went deeper than that. The word "free" carried with it an inescapable moral
connotation: if freedom was an end in itself, it didn't matter whether free software also hap-
pened to be better, or more profitable for certain businesses in certain circumstances. Those
were merely pleasant side effects of a motive that was, at its root, neither technical nor mer-
cantile, but moral. Furthermore, the "free as in freedom" position forced a glaring inconsis-
tency on corporations who wanted to support particular free software in some areas of their
business but continue marketing proprietary software in others.

These dilemmas came to a community that was already poised for an identity crisis. The pro-
grammers who actually write free software have never been of one mind about the overall
goal, if any, of the free software movement. Even saying that opinions run from one extreme
to the other would be misleading, in that it would falsely imply a linear range where there is
instead a multidimensional scattering. However, two broad categories of belief can be dis-
tinguished, if we are willing to ignore subtleties for the moment. One group takes Stallman's
view, that the freedom to share and modify is the most important thing, and that therefore if
you stop talking about freedom, you've left out the core issue. Others feel that the software's
quality itself is the most important argument in its favor, and are uncomfortable with pro-
claiming proprietary software inherently bad. Some, but not all, free software programmers
believe that the author (or employer, in the case of paid work) should have the right to con-
trol the terms of distribution, and that no moral judgement need be attached to the choice of
particular terms. Others don't believe this.

For a long time, these differences did not need to be carefully examined or articulated, but
free software's burgeoning success in the business world made the issue unavoidable. In

11The source code to Netscape Navigator was eventually released under an open source license, in 1998, and became the
foundation for the Mozilla Firefox web browser. See https://www.mozilla.org/.

11

https://www.mozilla.org/

Introduction

1998, the term open source was coined by Christine Peterson as an alternative to "free", dur-
ing meetings of a coalition that eventually became the Open Source Initiative (OSI).12 The
OSI's position was not only that "free software" was potentially confusing, but that the word
"free" was just one symptom of a general problem: that the movement needed a marketing
program to pitch it to the corporate world, and that talk of morals and the social benefits of
sharing would never fly in corporate boardrooms. In their own words at the time:

The Open Source Initiative is a marketing program for free software. It's a
pitch for "free software" on solid pragmatic grounds rather than ideologi-
cal tub-thumping. The winning substance has not changed, the losing atti-
tude and symbolism have. ...

The case that needs to be made to most techies isn't about the concept of
open source, but the name. Why not call it, as we traditionally have, free
software?

One direct reason is that the term "free software" is easily misunderstood
in ways that lead to conflict. ...

But the real reason for the re-labeling is a marketing one. We're trying to
pitch our concept to the corporate world now. We have a winning prod-
uct, but our positioning, in the past, has been awful. The term "free soft-
ware" has been misunderstood by business persons, who mistake the desire
to share with anti-commercialism, or worse, theft.

Mainstream corporate CEOs and CTOs will never buy "free software." But
if we take the very same tradition, the same people, and the same free-soft-
ware licenses and change the label to "open source" — that, they'll buy.

Some hackers find this hard to believe, but that's because they're techies
who think in concrete, substantial terms and don't understand how impor-
tant image is when you're selling something.

In marketing, appearance is reality. The appearance that we're willing to
climb down off the barricades and work with the corporate world counts
for as much as the reality of our behavior, our convictions, and our soft-
ware.

(from https://www.opensource.org/. Or rather, formerly from that
site — the OSI has apparently taken down the pages since then, although
they can still be seen at https://web.archive.org/web/20021204155057/
http://www.opensource.org/advocacy/faq.php and https://we-

12OSI's web home is https://www.opensource.org/.

12

https://www.opensource.org/
https://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
https://web.archive.org/web/20021204155057/http://www.opensource.org/advocacy/faq.php
https://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
https://www.opensource.org/

Introduction

b.archive.org/web/20021204155022/http://www.opensource.org/advoca-
cy/case_for_hackers.php#marketing [sic].)

The tips of many icebergs of controversy are visible in that text. It refers to "our convic-
tions", but smartly avoids spelling out exactly what those convictions are. For some, it might
be the conviction that code developed according to an open process will be better code; for
others, it might be the conviction that all information should be shared. There's the use of the
word "theft" to refer (presumably) to illegal copying — a usage that many object to, on the
grounds that it's not theft if the original possessor still has the item afterwards. There's the
tantalizing hint that the free software movement might be mistakenly accused of anti-com-
mercialism, but the question of whether such an accusation would have any basis in fact is
left carefully unexamined.

None of which is to say that the OSI's rhetoric is inconsistent or misleading. It wasn't.
Rather, it was an example of exactly what the OSI claimed had been missing from the free
software movement: good marketing, where "good" means "viable in the business world."
The Open Source Initiative gave a lot of people exactly what they had been looking for — a
vocabulary for talking about free software as a development methodology and business strat-
egy, instead of as a moral crusade.

The appearance of the Open Source Initiative changed the landscape of free software. It for-
malized a dichotomy that had long been unnamed, and in doing so forced the movement to
acknowledge that it had internal politics as well as external. The effect today is that both
sides have had to find common ground, since most projects include programmers from both
camps, as well as participants who don't fit any clear category. This doesn't mean people
never talk about moral motivations — lapses in the traditional "hacker ethic" are sometimes
called out, for example. But it is rare for a free software / open source developer to openly
question the basic motivations of others in a project. The contribution trumps the contribu-
tor. If someone writes good code, you don't ask them whether they do it for moral reasons,
or because their employer paid them to, or because they're building up their résumé, or what-
ever. You evaluate the contribution on technical grounds, and respond on technical grounds.
Even explicitly political organizations like the Debian project, whose goal is to offer a 100%
free (that is, "free as in freedom") computing environment, are fairly relaxed about integrat-
ing with third-party non-free code and cooperating with programmers who don't share exact-
ly the same goals.13

The Situation Today
When running a free software project, you won't need to talk about such weighty philosoph-
ical matters on a daily basis. Programmers will not insist that everyone else in the project

13See also the section called “Terminology” [272], which discusses how "free software" and "open source" are almost
entirely synonymous when used to describe licensing and distribution terms.

13

https://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing
https://web.archive.org/web/20021204155022/http://www.opensource.org/advocacy/case_for_hackers.php#marketing

Introduction

agree with their views on all things (those who do insist on this quickly find themselves un-
able to work in any project). But you do need to be aware that the question of "free" versus
"open source" exists, partly to avoid saying things that might be inimical to some of the par-
ticipants, and partly because understanding developers' motivations is key to managing a
project well.

Free software is a culture by choice. To operate successfully in it, you have to understand
why people choose to be in it in the first place. Coercive techniques don't work. If people are
unhappy in one project, they will just wander off to another one. Free software is remarkable
even among intentional communities for its lightness of investment. Many of the people in-
volved have never actually met the other participants face-to-face. The normal conduits by
which humans bond with each other and form lasting groups are narrowed down to a tiny
channel: the written word, carried over electronic wires. Because of this, it can take a long
time for a cohesive and dedicated group to form. Conversely, it's quite easy for a project to
lose a potential participant in the first five minutes of acquaintanceship. If a project doesn't
make a good first impression, a newcomer may wait a long time before giving it a second
chance.

This potential transience of relationships is perhaps the single most daunting task facing a
new project. What will persuade all these people to stick together long enough to produce
something useful? The answer to that question is complex enough to occupy the rest of this
book, but if it had to be expressed in one sentence, it would be this:

People should feel that their connection to a project, and influence over it,
is directly proportional to their contributions.

No class of developers, or potential developers, should ever feel discounted or discriminat-
ed against for non-technical reasons.14 Clearly, projects with corporate sponsorship and/
or salaried developers need to be especially careful in this regard, as Chapter 5, Organiza-
tions and Money: Businesses, Non-Profits, and Governments [116] discusses in detail.
Of course, this doesn't mean that if there's no corporate sponsorship then you have noth-
ing to worry about. Money is merely one of many factors that can affect the success of a
project. There are also questions of what programming languages to choose, what license,
what development process, precisely what kind of infrastructure to set up, how to publicize
the project's inception effectively, and much more. Starting a project out on the right foot is
the topic of the next chapter.

14There can be cases where you discriminate against certain developers due to behavior which, though not related to
their technical contributions, has the potential to harm the project. That's reasonable: their behavior is relevant because in
the long run it will have a negative effect on the project. The varieties of human culture being what they are, I can give
no single, succinct rule to cover all such cases, except to say that you should try to be welcoming to all potential contrib-
utors and, if you must discriminate, do so only on the basis of actual behavior in the project, not on the basis of a contrib-
utor's group affiliation or group identity.

14

Chapter 2. Getting Started
Starting a free software project is a twofold task. The software needs to acquire users, and
to acquire developers. These two needs are not necessarily in conflict, but the interaction be-
tween them adds some complexity to a project's initial presentation. Some information is
useful for both audiences, some is useful only for one or the other. Both kinds of informa-
tion should subscribe to the principle of scaled presentation: the degree of detail presented
at each stage should correspond to the amount of time and effort put in by the reader at that
stage. More effort should always result in more reward. When effort and reward do not cor-
relate reliably, people lose faith and stop investing effort.

The corollary to this is that appearances matter. Programmers, in particular, often don't like
to believe this. Their love of substance over form is almost a point of professional pride. It's
no accident that so many programmers exhibit an antipathy for marketing and public rela-
tions work, nor that professional graphic designers are often horrified at the designs pro-
grammers come up with on their own.

This is a pity, because there are situations where form is substance, and project presentation
is one of them. For example, the very first thing a visitor learns about a project is what its
home page looks like. This information is absorbed before any of the actual content on the
site is comprehended — before any of the text has been read or links clicked on. However
unjust it may be, people cannot stop themselves from forming an immediate first impression.
The site's appearance signals what kind of care was taken in organizing the project's presen-
tation. Humans have extremely sensitive antennae for detecting the investment of care. Most
of us can tell in one quick glance whether a home page was thrown together quickly or was
given serious thought. This is the first piece of information your project puts out, and the im-
pression it creates will carry over to the rest of the project by association.

Thus, while much of this chapter talks about the content your project should start out with,
remember that its look and feel matter too. Because the project web site has to work for two
different types of visitors — users and developers — special attention must be paid to clari-
ty and directedness. Although this is not the place for a general treatise on web design, one
principle is important enough to deserve mention, particularly when the site serves multiple
(if overlapping) audiences: people should have a rough idea where a link goes before click-
ing on it. For example, it should be obvious from looking at the links to user documentation
that they lead to user documentation, and not to, say, developer documentation. Running a
project is partly about supplying information, but it's also about supplying comfort. The mere
presence of certain standard offerings, in expected places, reassures users and developers
who are deciding whether they want to get involved. It says that this project has its act to-
gether, has anticipated the questions people will ask, and has made an effort to answer them
in a way that requires minimal exertion on the part of the asker. By giving off this aura of

15

Getting Started

preparedness, the project sends out a message: "Your time will not be wasted if you get in-
volved," which is exactly what people need to hear.

What We Mean by Users and Developers

The terms user and developer here refer to someone's relationship to the open source
software project in question, not to her identity in the world at large.

For example, if the open source project is a Javascript library intended for use in web
development, and someone is using the library as part of her work building web sites,
then she is a "user" of the library (even though professionally her title might be "soft-
ware developer"). But if she starts contributing bugfixes and enhancements back up-
stream — that is, back into the project — then, to the extent that she becomes in-
volved in the project's maintenance, she is also a "developer" of the project.

It's common for developers in an open source projects to be users as well, but it's not
always the case. Especially with large projects started by organizations to meet enter-
prise-scale software needs, the developers may not always be direct users of the soft-
ware, although they are usually somehow connected with the team that deploys that
software within their organization.

In projects meant primarily for programmers, the boundary between user and devel-
oper is very porous: every user is a potential developer. But even in projects meant for
non-technical people, some percentage of the users are still potential developers. Open
source projects should be run in such a way as to make that transition available to any-
one who's interested.

If you use a "canned hosting" site (see the section called “Canned Hosting” [55]), one
advantage of that choice is that those sites have a default layout that is similar from project to
project and is pretty well-suited to presenting a project to the world. That layout can be cus-
tomized, within certain boundaries, but the default design prompts you to include the infor-
mation visitors are most likely to be looking for.

But First, Look Around
Before starting an open source project, there is one important caveat:

Always look around to see if there's an existing project that does what you want. The
chances are pretty good that whatever problem you want solved now, someone else want-
ed solved before you. If they did solve it, and released their code under a free license, then
there's no reason for you to reinvent the wheel today. There are exceptions, of course: if you
want to start a project as an educational experience, pre-existing code won't help; or maybe

16

Getting Started

the project you have in mind is so specialized that you know there is zero chance anyone else
has done it. But generally, there's no point not looking, and the payoff can be huge.1

Even if you don't find exactly what you were looking for, you might find something so close
that it makes more sense to join that project and add functionality to it than to start from
scratch yourself. See the section called “Evaluating Open Source Projects” [159] for a dis-
cussion of how to evaluate an existing open source project quickly.

Starting From What You Have
You've looked around, found that nothing out there really fits your needs, and decided to
start a new project.

What now?

The hardest part about launching a free software project is transforming a private vision in-
to a public one. You or your organization may know perfectly well what you want, but ex-
pressing that goal comprehensibly to the world is a fair amount of work. It is essential, how-
ever, that you take the time to do it. You and the other founders must decide what the project
is really about — that is, decide its limitations, what it won't do as well as what it will — and
write up a mission statement.2 This part is usually not too hard, though it can sometimes re-
veal unspoken assumptions and even disagreements about the nature of the project, which
is fine: better to resolve those now than later. The next step is to package up the project for
public consumption, and this is, basically, pure drudgery.

What makes it so laborious is that it consists mainly of organizing and documenting things
everyone already knows — "everyone", that is, who's been involved in the project so far.
Thus, for the people doing the work, there is no immediate benefit. They do not need a
README file giving an overview of the project, nor a design document. They do not need an
organized code tree conforming to the informal but widespread standards of software source
distributions. Whatever way the source code is arranged is fine for them, because they're al-
ready accustomed to it anyway, and if the code runs at all, they know how to use it. It doesn't
even matter, for them, if the fundamental architectural assumptions of the project remain un-
documented; they're already familiar with those too.

Newcomers, on the other hand, need all these things. Fortunately, they don't need them all
at once. It's not necessary for you to provide every possible resource before taking a project
public. In a perfect world, perhaps, every new open source project would start out life with
a thorough design document, a complete user manual (with special markings for features

1If the usual Internet search engines don't turn up anything, another good place to look is the Free Software Foundation's
directory of free software at https://directory.fsf.org/, which the FSF actively maintains.
2See the section called “Have a Clear Mission Statement” [20].

17

https://directory.fsf.org/

Getting Started

planned but not yet implemented), beautifully and portably packaged code capable of run-
ning on any computing platform, and so on. In reality, taking care of all these loose ends
would be prohibitively time-consuming, and anyway, it's work that one can reasonably hope
others will help with once the project is under way.

What is necessary, however, is to put enough investment into presentation that newcomers
can get past the initial obstacle of unfamiliarity. Think of it as the first step in a bootstrapping
process, to bring the project to a kind of minimum activation energy. I've heard this thresh-
old called the hacktivation energy: the amount of energy a newcomer must put in before she
starts getting something back. The lower a project's hacktivation energy, the better. Your first
task is bring the hacktivation energy down to a level that encourages people to get involved.

Each of the following subsections describes one aspect of starting a new project. They are
presented roughly in the order that a new visitor would encounter them, though of course
the order in which you actually implement them might be different. You can treat them as a
checklist. When starting a project, just go down the list and make sure you've got each item
covered, or at least that you're comfortable with the potential consequences if you've left one
out.

Choose a Good Name
Put yourself in the shoes of someone who's just heard about your project, perhaps by having
stumbled across it while searching for software to solve some problem. The first thing they'll
encounter is the project's name.

A good name will not automatically make your project successful, and a bad name will not
doom it.3 However, a bad name can slow down adoption of the project, either because people
don't take it seriously, or because they simply have trouble remembering it.

A good name:

• Gives some idea what the project does, or at least is related in an obvious way, such that
if one knows the name and knows what the project does, the name will come quickly to
mind thereafter.

• Is easy to remember. Here, there is no getting around the fact that English has become the
default language of the Internet: "easy to remember" usually means "easy for someone
who can read English to remember."

• Does not depend on native or high-level fluency in English, nor on a particular regional
pronunciation. Names that are puns, for example, do not always travel well. If the pun is

3Well, a really bad name probably could do that, but we start from the assumption that no one here is actively trying to
make their project fail.

18

Getting Started

particularly compelling and memorable, it may still be worth it; just keep in mind that not
everyone who sees the name will hear it in their head in the same way.

• Is not the same as some other project's name, and does not infringe on any trademarks.
This is just good manners, as well as good legal sense. You don't want to create identity
confusion. It's hard enough to keep track of everything that's available on the Net already,
without different things having the same name.

The resources mentioned earlier in the section called “But First, Look Around” [16]
are useful in discovering whether another project already has the name you're thinking of.
For the U.S., trademark searches are available at http://www.uspto.gov/.

• If possible, is available as a domain name in the .com, .net, and .org top-level do-
mains. You should pick one, probably .org, to advertise as the official home site for
the project; the other two should forward there and are simply to prevent third parties
from creating identity confusion around the project's name. Even if you intend to host the
project at some other site (see the section called “Hosting” [32]), you can still register
project-specific domains and forward them to the hosting site. It helps users a lot to have a
simple URL to remember.4

• If possible, is available as a username on https://twitter.com/ and other microblog sites.
See the section called “Own the Name in the Important Namespaces” [19] for more on
this and its relationship to the domain name.

Own the Name in the Important Namespaces

For large projects, it is a good idea to own the project's name in as many of the relevant
namespaces on the Internet as you can. By namespaces, I mean not just the global Domain
Name System, but also online services in which the account name (username) is the pub-
licly visible handle by which people refer to the project. If you have the same name in all the
places where people would look for you, you make it easier for people to sustain a mild in-
terest in the project until they're ready to become more involved.

For example, the Gnome free desktop project has the https://gnome.org/ domain name,5

the https://twitter.com/gnome Twitter handle, the https://github.com/gnome username at

4The importance of top-level domain names seems to be declining. A number of projects now have just their name in the
.io TLD, for example, and don't bother with .com, .net, or .org. I can't predict what the brand psychology of do-
main names will be in the future, so just use your judgement, and if you can get the name in all the important TLDs, do
so.
5They didn't manage to get gnome.com or gnome.net, but that's okay — if you only have one, and it's .org, it's fine.
That's usually the first one people look for when they're seeking the open source project of that name. If they couldn't get
"gnome.org" itself, a typical solution would be to get "gnomeproject.org" instead, and many projects solve the problem
that way.

19

http://www.uspto.gov/
https://twitter.com/
https://gnome.org/
https://twitter.com/gnome
https://github.com/gnome

Getting Started

GitHub.com,6 and on the Libera.chat IRC network (see the section called “Real-Time Chat
Systems” [92]) they have the channel #gnome, although they also maintain their own
IRC servers (where they control the channel namespace, of course).

All this makes the Gnome project splendidly easy to find: it's usually right where a poten-
tial contributor would expect it to be. Of course, Gnome is a large and complex project with
thousands of contributors and many subdivisions; the advantage to Gnome of being easy to
find is greater than it would be for a newer project, since by now there are so many ways to
get involved in Gnome. But it will certainly never harm your project to own its name in as
many of the relevant namespaces as it can, and it can sometimes help. So when you start a
project, think about what its online handle should be and register that handle with the online
services you think you're likely to care about. The ones mentioned above are probably a good
initial list, but you may know others that are relevant for the particular subject area of your
project.

Have a Clear Mission Statement

Once they've found the project's home site, the next thing people will look for is a quick de-
scription or mission statement, so they can decide (within 30 seconds) whether or not they're
interested in learning more. This should be prominently placed on the front page, preferably
right under the project's name.

The description should be concrete, limiting, and above all, short. Here's an example of a
good one, from https://hadoop.apache.org/:

The Apache™ Hadoop® project develops open-source software for reli-
able, scalable, distributed computing.

The Apache Hadoop software library is a framework that allows for the
distributed processing of large data sets across clusters of computers using
simple programming models. It is designed to scale up from single servers
to thousands of machines, each offering local computation and storage.
Rather than rely on hardware to deliver high-availability, the library itself
is designed to detect and handle failures at the application layer, so deliv-
ering a highly-available service on top of a cluster of computers, each of
which may be prone to failures.

In just four sentences, they've hit all the high points, largely by drawing on the reader's prior
knowledge. That's an important point: it's okay to assume a minimally informed reader with

6While the authoritative copy of Gnome's source code is at https://git.gnome.org/, they maintain a mirror at GitHub,
since so many developers are already familiar with GitHub.

20

https://hadoop.apache.org/
https://git.gnome.org/

Getting Started

a baseline level of technical preparedness. A reader who doesn't know what "clusters" and
"high-availability" mean in this context probably can't make much use of Hadoop anyway, so
there's no point writing for a reader who knows any less than that. The phrase "designed to
detect and handle failures at the application layer" will stand out to engineers who have ex-
perience with large-scale computing clusters — when they see those words, they'll know that
the people behind Hadoop understand that world, and the first-time visitor will thus be likely
to give Hadoop further consideration.

Those who remain interested after reading the mission statement will next want to see more
details, perhaps some user or developer documentation, and eventually will want to down-
load something. But before any of that, they'll need to be sure it's open source.

State That the Project is Free
The front page must make it unambiguously clear that the project is open source. This may
seem obvious, but you would be surprised how many projects forget to do it. I have seen
free software project web sites where the front page not only did not say which particular
free license the software was distributed under, but did not even state outright that the soft-
ware was free at all. Sometimes the crucial bit of information was relegated to the Down-
loads page, or the Developers page, or some other place that required one more mouse click
to get to. In extreme cases, the license was not given anywhere on the web site at all — the
only way to find it was to download the software and look at a license file inside.

Please don't make this mistake. Such an omission can lose many potential developers and
users. State up front, in or near the mission statement, that the project is "free software" or
"open source software", and give the exact license. A quick guide to choosing a license is
given in the section called “Choosing a License and Applying It” [33], and licensing is-
sues are discussed in detail in Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks
and Patents [272].

By this point, our hypothetical visitor has determined — probably in a minute or less — that
she's interested in spending, say, at least five more minutes investigating this project. The
next sections describe what she should encounter in those five minutes.

Features and Requirements List
There should be a brief list of the features the software supports (if something isn't complet-
ed yet, you can still list it, but put "planned" or "in progress" next to it), and the kind of com-
puting environment required to run the software. Think of the features/requirements list as
what you would give to someone asking for a quick summary of the software. It is often just
a logical expansion of the mission statement. For example, the mission statement might say:

21

Getting Started

Scanley is an open source full-text indexer and search engine with a rich
API, for use by programmers in providing search services for large collec-
tions of text files.

The features and requirements list would give the details, clarifying the mission statement's
scope:

Features:

• Searches plain text, HTML, JSON, XML, and other formats

• Word or phrase searching

• (planned) Fuzzy matching

• (planned) Incremental index updates

• (planned) Indexing of remote web sites

Requirements:

• Python 3.9 or higher

• Enough disk space to hold the indexes (approximately 2x original data
size)

With this information, readers can quickly get a feel for whether this software might be what
they're looking for, and they can consider getting involved as developers too.

Development Status

Visitors usually want to know how a project is doing. For new projects, they want to know
the gap between the project's promise and current reality. For mature projects, they want to
know how actively it is maintained, how often it puts out new releases, how responsive it is
to bug reports, etc.

There are a couple of different ways to provide answers to these questions. One is to have
a development status page, listing the project's near-term goals and what kinds of expertise
are expected from participating developers at the current stage. The page can also give a his-
tory of past releases, with feature lists, so visitors can get an idea of how the project defines
"progress", and how quickly it makes progress according to that definition. Some projects
structure their development status page as a roadmap that includes the future: past events are

22

Getting Started

shown on the dates they actually happened, future ones on the approximate dates the project
hopes they will happen.

The other way — not mutually exclusive with the first, and in fact probably best done in
combination with it — is to have various automatically-maintained counters and indica-
tors embedded in the project's front page and/or its developer landing page, showing vari-
ous pieces of information that, in the aggregate, give a sense of the project's development
status and progress. For example, an Announcements or News panel showing recent news
items, a Twitter or other microblog stream showing notices that match the project's designat-
ed hashtags, a timeline of recent releases, a panel showing recent activity in the bug track-
er (bugs filed, bugs responded to), another showing mailing list or discussion forum activi-
ty, etc. Each such indicator should be a gateway to further information of its type: for exam-
ple, clicking on the "recent bugs" panel should take one to the full bug tracker, or at least to
an expanded view into bug tracker activity.

Really, there are two slightly different meanings of "development status" being conflated
here. One is the formal sense: where does the project stand in relation to its stated goals, and
how fast is it making progress. The other is less formal but just as useful: how active is this
project? Is stuff going on? Are there people here, getting things done? Often that latter notion
is what a visitor is most interested in. Whether or not a project met its most recent milestone
is often not as interesting as the more fundamental question of whether it has an active com-
munity of developers around it.

These two notions of development status are, of course, related, and a well-presented project
shows both kinds. The information can be divided between the project's front page (show
enough there to give an overview of both types of development status) and a more develop-
er-oriented page.

Development Status Should Always Reflect Reality

Don't be afraid of looking unready, and never give in to the temptation to inflate or hype the
development status. Everyone knows that software evolves by stages; there's no shame in
saying "This is alpha software with known bugs. It runs, and works at least some of the time,
but use at your own risk." Such language won't scare away the kinds of developers you need
at that stage. One of the worst things a project can do is attract users before the software is
ready for them. A reputation for instability or bugginess is very hard to shake, once acquired.
Conservatism pays off in the long run; it's always better for the software to be more stable
than the user expected rather than less, and pleasant surprises produce the best kind of word-
of-mouth.

23

Getting Started

Alpha and Beta

The term alpha usually means a first release, with which users can get real work done
and which has all the intended functionality, but which also has known bugs. The
main purpose of alpha software is to generate feedback, so the developers know what
to work on. Alpha releases are generally free to change APIs and functionality.

The next stage, beta, means the software's APIs are finalized and its serious known
bugs fixed, but it has not yet been tested enough to certify for production release. The
purpose of beta software is to either become the official release, assuming no bugs are
found, or provide detailed feedback to the developers so they can reach the official re-
lease quickly. In a series of beta releases, APIs and functionality should not change
except when absolutely necessary.

Downloads
The software should be downloadable as source code in standard formats. When a project is
first getting started, binary (executable) packages are not necessary, unless the software has
such complicated build requirements or dependencies that merely getting it to run would be
a lot of work for most people. (But if this is the case, the project is going to have a hard time
attracting developers anyway!)

The distribution mechanism should be as convenient, standard, and low-overhead as possi-
ble. If you were trying to eradicate a disease, you wouldn't distribute the medicine in such a
way that it requires a non-standard syringe size to administer. Likewise, software should con-
form to standard build and installation methods; the more it deviates from the standards, the
more potential users and developers will give up and go away confused.

That sounds obvious, but many projects don't bother to standardize their installation pro-
cedures until very late in the game, telling themselves they can do it any time: "We'll sort
all that stuff out when the code is closer to being ready." What they don't realize is that by
putting off the boring work of finishing the build and installation procedures, they are actu-
ally making the code take longer to get ready — because they discourage developers who
might otherwise have contributed to the code, if only they could build and test it. Most insid-
iously, the project won't even know it's losing all those developers, because the process is an
accumulation of non-events: someone visits a web site, downloads the software, tries to build
it, fails, gives up and goes away. Who will ever know it happened, except the person them-
selves? No one working on the project will realize that someone's interest and good will have
been silently squandered.

Boring work with a high payoff should always be done early, and significantly lowering the
project's barrier to entry through good packaging brings a very high payoff.

24

Getting Started

When you release a downloadable package, give it a unique version number, so that people
can compare any two releases and know which supersedes the other. That way they can re-
port bugs against a particular release (which helps respondents to figure out if the bug is al-
ready fixed or not). A detailed discussion of version numbering can be found in the section
called “Release Numbering” [207], and the details of standardizing build and installation
procedures are covered in the section called “Packaging” [220].

Version Control and Bug Tracker Access
Downloading source packages is fine for those who just want to install and use the software,
but it's not enough for those who want to debug or add new features. Nightly source snap-
shots can help, but they're still not fine-grained enough for a thriving development communi-
ty. People need real-time access to the latest sources, and a way to submit changes based on
those sources.

The solution is to use a version control system — specifically, an online, publicly-accessible
version controlled repository, from which anyone can check out the project's materials and
subsequently get updates. A version control repository is a sign — to both users and develop-
ers — that this project is making an effort to give people what they need to participate. As of
this writing, many open source projects use https://github.com/, which offers unlimited free
public version control hosting for open source projects. While GitHub is not the only choice,
nor even the only good choice, it's a reasonable one for most projects7. Version control infra-
structure is discussed in detail in the section called “Version Control” [73].

The same goes for the project's bug tracker. The importance of a bug tracking system lies
not only in its day-to-day usefulness to developers, but in what it signifies for project ob-
servers. For many people, an accessible bug database is one of the strongest signs that a
project should be taken seriously — and the higher the number of bugs in the database, the
better the project looks. That might seem counterintuitive, but remember that the number of
bug reports filed really depends mostly on two things: the number of people using the soft-
ware and the convenience with which those people can report bugs. Any software of suffi-
cient size and complexity has an essentially arbitrary number of bugs waiting to be discov-
ered. The real question is, how well will the project do at receiving, recording, and prioritiz-
ing those bugs? A project with a large and well-maintained bug database ("well-maintained"
meaning bugs are responded to promptly, duplicate bugs are unified, etc) therefore makes a
much better impression than a project with no bug database or with a nearly empty database.

Of course, if your project is just getting started, then the bug database will contain very
few bugs, and there's not much you can do about that. But if the status page emphasizes the

7Although GitHub is based on Git, a popular open source version control system, the code that runs GitHub's web ser-
vices is not itself open source. Whether this matters for your project is a complex question, and is addressed in more
depth in the section called “Canned Hosting” [55]

25

https://github.com/

Getting Started

project's youth, and if people looking at the bug database can see that most filings have tak-
en place recently, they can extrapolate from that the project still has a healthy rate of filings,
and they will not be unduly alarmed by the low absolute number of bugs recorded.8

Note that bug trackers are often used to track not only software defects, but also enhance-
ment requests, documentation changes, pending tasks, and more. The details of running a
bug tracker are covered in the section called “Bug Tracker” [87], so I won't go into them
here. The important thing from a presentation point of view is mainly to have a bug tracker
and to use it — and to make sure that it is easy to find.

Communications Channels

Visitors usually want to know how to reach the human beings involved with the project. Pro-
vide the addresses of mailing lists, chat rooms, and any other forums where others involved
with the software can be reached.9 Make it clear that you and the other maintainers of the
project are subscribed to these mailing lists, so people see there's a way to give feedback that
will reach the developers. Your presence on the lists does not imply a commitment to answer
all questions or implement all feature requests. In the long run, probably only a fraction of
users will use the forums anyway, but the others will be comforted to know that they could if
they ever needed to.

In the early stages of a project, there's usually no need to have separate user and developer
forums. It's much better to have everyone involved with the software talking together, in one
"room." Among early adopters, the distinction between developer and user is often fuzzy; to
the extent that the distinction can be made, the ratio of developers to users is usually much
higher in the early days of the project than later on. While you can't assume that every early
adopter is a programmer who wants to hack on the software, you can assume that they are at
least interested in following development discussions and in getting a sense of the project's
direction.

As this chapter is only about getting a project started, it's enough merely to say that
these communications forums need to exist. Later, in the section called “Handling
Growth” [185], we'll examine where and how to set up such forums, the ways in which
they might need moderation or other management, and how, when the time comes, to sepa-
rate user forums from developer forums without creating an unbridgeable gulf.

8For a more thorough argument that bug reports should be treated as good news, see http://www.rants.org/2010/01/10/
bugs-users-and-tech-debt/, which is about how the accumulation of bug reports does not represent technical debt (in the
sense of https://en.wikipedia.org/wiki/Technical_debt) but rather user engagement.
9See Chapter 3, Technical Infrastructure [51].

26

http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/
https://en.wikipedia.org/wiki/Technical_debt

Getting Started

Developer Guidelines
If someone is considering contributing to the project, she'll look for developer guidelines.
Developer guidelines are not so much technical as social: they explain how the developers
interact with each other and with the users, and ultimately how things get done.

This topic is covered in detail in the section called “Writing It All Down” [112], but the
basic elements of developer guidelines are:

• pointers to forums for interaction with other developers

• instructions on how to report bugs and submit patches

• some indication of how development is usually done and how decisions are made — is the
project a benevolent dictatorship, a democracy, or something else

No pejorative sense is intended by "dictatorship", by the way. It's perfectly okay to run a
tyranny where one particular developer has veto power over all changes. Many successful
projects work this way. The important thing is that the project come right out and say so. A
tyranny pretending to be a democracy will turn people off; a tyranny that says it's a tyranny
will do fine as long as the tyrant is competent and trusted. (See the section called “Forkabili-
ty” [102] for why dictatorship in open source projects doesn't have the same implications
as dictatorship in other areas of life.)

http://subversion.apache.org/docs/community-guide/ is an example of particularly thorough
developer guidelines; the LibreOffice guidelines at https://wiki.documentfoundation.org/De-
velopment are also a good example.

If the project has a written Code of Conduct (see the section called “Codes of Con-
duct” [40]), then the developer guidelines should link to it.

The separate issue of providing a programmer's introduction to the software is discussed in
the section called “Developer Documentation” [30].

Documentation
Documentation is essential. There needs to be something for people to read, even if it's rudi-
mentary and incomplete. This falls squarely into the "drudgery" category referred to earli-
er, and is often the first area where a new open source project falls down. Coming up with
a mission statement and feature list, choosing a license, summarizing development sta-
tus — these are all relatively small tasks, which can be definitively completed and usually
need not be revisited once done. Documentation, on the other hand, is never really finished,
which may be one reason people sometimes delay starting it at all.

27

http://subversion.apache.org/docs/community-guide/
https://wiki.documentfoundation.org/Development
https://wiki.documentfoundation.org/Development

Getting Started

Insidiously, documentation's utility to those writing it is the inverse of its utility to those
reading it. The most important documentation for initial users is the basics: how to quick-
ly set up the software, an overview of how it works, perhaps some guides to doing com-
mon tasks. Yet these are exactly the things the writers of the documentation know all too
well — so well that it can be difficult for them to see things from the reader's point of view,
and to laboriously spell out the steps that (to the writers) seem so obvious as to be unworthy
of mention.

There's no magic solution to this problem. Someone just needs to sit down and write the
stuff, and then, most importantly, incorporate feedback from readers. Use a simple, easy-to-
edit format such as Markdown, HTML, plain text, ReStructuredText, or Asciidoc — some-
thing that's convenient for lightweight, quick improvements on the spur of the moment.10

This is not only to remove any overhead that might impede the original writers from making
incremental improvements, but also for those who join the project later and want to work on
the documentation.

One way to ensure basic initial documentation gets done is to limit its scope in advance. That
way, writing it at least won't feel like an open-ended task. A good rule of thumb is that it
should meet the following minimal criteria:

• Tell the reader clearly how much technical expertise they're expected to have.

• Describe clearly and thoroughly how to set up the software, and tell the user how to run
some sort of diagnostic test or simple command to confirm that they've set things up cor-
rectly. Startup documentation is in some ways more important than actual usage documen-
tation. The more effort someone has invested in installing and getting started with the soft-
ware, the more persistent she'll be in figuring out advanced functionality that's not well-
documented. When people abandon, they abandon early; therefore, it's the earliest stages,
like installation, that need the most support.

• Give one tutorial-style example of how to do a common task. Obviously, many examples
for many tasks would be even better, but if time is limited, pick one task and walk through
it thoroughly. Once someone sees that the software can be used for one thing, they'll start
to explore what else it can do on their own — and, if you're lucky, start filling in the docu-
mentation themselves. Which brings us to the next point...

• Label the areas where the documentation is known to be incomplete. By showing the
readers that you are aware of its deficiencies, you align yourself with their point of view.
Your empathy reassures them that they won't struggle to convince the project of what's
important. These labels needn't represent promises to fill in the gaps by any particular
date — it's equally legitimate to treat them as open requests for help.

10Don't worry too much about choosing the right format the first time. If you change your mind later, you can always do
an automated conversion using Pandoc (https://pandoc.org/).

28

https://pandoc.org/

Getting Started

The last point is of wider importance, actually, and can be applied to the entire project, not
just the documentation. An accurate accounting of known deficiencies is the norm in the
open source world. You don't have to exaggerate the project's shortcomings, just identify
them scrupulously and dispassionately when the context calls for it (whether in the documen-
tation, in the bug tracking database, or on a mailing list discussion). No one will treat this
as defeatism on the part of the project, nor as a commitment to solve the problems by a cer-
tain date, unless the project makes such a commitment explicitly. Since anyone who uses the
software will discover the deficiencies for themselves, it's much better for them to be psy-
chologically prepared — then the project will look like it has a solid knowledge of how it's
doing.

Maintaining a FAQ

A FAQ ("Frequently Asked Questions" document) can be one of the best investments
a project makes in terms of educational payoff. FAQs are highly tuned to the questions
users and developers actually ask — as opposed to the questions you might have ex-
pected them to ask — and therefore, a well-maintained FAQ tends to give those who
consult it exactly what they're looking for. The FAQ is often the first place users look
when they encounter a problem, often even in preference to the official manual, and
it's probably the document in your project most likely to be linked to from other sites.

Unfortunately, you cannot make the FAQ at the start of the project. Good FAQs are
not written, they are grown. They are by definition reactive documents, evolving over
time in response to the questions people ask about the software. Since it's impossible
to correctly anticipate those questions, it is impossible to sit down and write a useful
FAQ from scratch.

Therefore, don't waste your time trying to. You may, however, find it useful to set up
a mostly blank FAQ template with just a few questions and answers, so there will be
an obvious place for people to contribute questions and answers after the project is un-
der way. At this stage, the most important property is not completeness, but conve-
nience: if the FAQ is easy to add to, people will add to it. (Proper FAQ maintenance
is a non-trivial and intriguing problem: see the section called “"Manager" Does Not
Mean "Owner"” [249], the section called “Wikis” [96], and the section called
“Treat All Resources Like Archives” [189].)

Availability of Documentation

Documentation should be available from two places: online (directly from the web site),
and in the downloadable distribution of the software (see the section called “Packag-
ing” [220]). It needs to be online, in browsable form, for two reasons: one, people often
read documentation before downloading software for the first time, as a way of helping them

29

Getting Started

decide whether to download at all, and two, Internet search engines will often give results
that land people directly in the docs. But documentation should also be accompany the soft-
ware, on the principle that downloading should supply (i.e., make locally accessible) every-
thing one needs to use the package.

For online documentation, make sure that there is a link that brings up the entire documen-
tation in one HTML page (put a note like "monolithic" or "all-in-one" or "single large page"
next to the link, so people know that it might take a while to load). This is useful because
people often want to search for a specific word or phrase across the entire documentation.
Generally, they already know what they're looking for; they just can't remember what sec-
tion it's in. For such people, nothing is more frustrating than encountering one HTML page
for the table of contents, then a different page for the introduction, then a different page for
installation instructions, etc. When the pages are broken up like that, their browser's search
function is useless. The separate-page style is useful for those who already know what sec-
tion they need, or who want to read the entire documentation from front to back in sequence.
But this is not necessarily the most common way documentation is accessed. Often, someone
who is basically familiar with the software is coming back to search for a specific word or
phrase, and to fail to provide them with a single, searchable document would only make their
lives harder.

Developer Documentation

Developer documentation is written by programmers to help other programmers understand
the code, so they can repair and extend it. This is somewhat different from the developer
guidelines discussed earlier, which are more social than technical. Developer guidelines tell
programmers how to get along with each other; developer documentation tells them how to
get along with the code itself. The two are often packaged together in one document for con-
venience (as with the https://subversion.apache.org/docs/community-guide/ example given
earlier), but they don't have to be.

Although developer documentation can be very helpful, there's no reason to delay a release
to do it. As long as the original authors are available (and willing) to answer questions about
the code, that's enough to start with. In fact, having to answer the same questions over and
over is a common motivation for writing documentation. But even before it's written, deter-
mined contributors will still manage to find their way around the code. The force that drives
people to spend time learning a codebase is that the code does something useful for them. If
people have faith in that, they will take the time to figure things out; if they don't have that
faith, no amount of developer documentation will get or keep them.

So if you have time to write documentation for only one audience, write it for users. All user
documentation is, in effect, developer documentation as well; any programmer who's going
to work on a piece of software will need to be familiar with how to use it too. Later, when

30

https://subversion.apache.org/docs/community-guide/

Getting Started

you see programmers asking the same questions over and over, take the time to write up
some separate documents just for them.

Some projects use wikis for their initial documentation, or even as their primary documen-
tation. In my experience, this works best if the wiki is actively maintained by a few people
who agree on how the documentation is to be organized and what sort of "voice" it should
have. See the section called “Wikis” [96] for more.

If the infrastructure aspects of documentation workflow seem daunting, consider using
https://readthedocs.org/. Many projects now depend on it to automate the process of present-
ing their documentation online. The site takes care of format conversion, integration with the
project's version control repository (so that documentation rebuilds happen automatically),
and various other mundane tasks, so that you and your contributors can focus on content.

Demos, Screenshots, Videos, and Example
Output

If the project involves a graphical user interface, or if it produces graphical or otherwise dis-
tinctive output, put some samples up on the project web site. In the case of an interface, this
means screenshots or, better yet, a brief (4 minutes or fewer) video with subtitles or a narra-
tor. For output, it might be screenshots or just sample files to download. For web-based soft-
ware, the gold standard is a demo site, of course, assuming the software is amenable to that.

The main thing is to cater to people's desire for instant gratification in the way they are most
likely to expect. A single screenshot or video can be more convincing than paragraphs of de-
scriptive text and mailing list chatter, because it is proof that the software works. The code
may still be buggy, it may be hard to install, it may be incompletely documented, but im-
age-based evidence shows people that if one puts in enough effort, one can get it to run.

31

https://readthedocs.org/

Getting Started

Keep Videos Brief, and Say They're Brief

If you have a video demonstration of your project, keep the video under 4 minutes
long, and make sure people can see the duration before they click on it. This is in
keeping with the "principle of scaled presentation" mentioned at the beginning of this
chapter: make the decision to watch the video an easy one by removing as much risk
as possible. Visitors are more likely to click on a link that says "Watch our 3 minute
video" than on one that just says "Watch our video", because in the former case they
know what they're getting into before they click — and they'll watch it better, because
they've mentally prepared the necessary amount of attention commitment beforehand,
and thus won't tire mid-way through the video.

As to where the four-minute limit came from: it's a scientific fact, determined through
many attempts by the same experimental subject (who shall remain unnamed) to
watch project videos. The limit does not apply to tutorials or other instructional mater-
ial, of course; it's just for introductory videos.

In case you don't already have preferred software for recording desktop interaction
videos: If you use the GNOME 3 desktop manager, you can use its built-in screen
recording capability (see https://help.gnome.org/users/gnome-help/stable/screen-shot-
record.html.en#screencast — essentially, do Ctl+Alt+Shift+R to start recording, and
then do Ctl+Alt+Shift+R again to stop). There are many open source video editors;
OpenShot has been fine for post-capture editing in my experience.

There are many other things you could put on the project web site, if you have the time, or if
for one reason or another they are especially appropriate: a news page, a project history page,
a related links page, a site-search feature, a donations link, etc. None of these are necessities
at startup time, but keep them in mind for the future.

Hosting
Where on the Internet should you put the project's materials?

A web site, obviously — but the full answer is a little more complicated than that.

Many projects distinguish between their primary public user-facing web site — the one with
the pretty pictures and the "About" page and the gentle introductions and videos and guid-
ed tours and all that stuff — and their developers' site, where everything's grungy and full of
closely-spaced text in monospace fonts and impenetrable abbreviations.

In the early stages of your project it is not so important to distinguish between these two au-
diences. Most of the interested visitors you get will be developers, or at least people who are

32

https://help.gnome.org/users/gnome-help/stable/screen-shot-record.html.en#screencast
https://help.gnome.org/users/gnome-help/stable/screen-shot-record.html.en#screencast

Getting Started

comfortable trying out new code. Over time, you may find it makes sense to have a user-fac-
ing site (of course, if your project is a code library, those "users" might be other program-
mers) and a somewhat separate collaboration area for those interested in participating in de-
velopment. The collaboration site would have the code repository, bug tracker, development
wiki, links to development mailing lists, etc. The two sites should link to each other, and in
particular it's important that the user-facing site make it clear that the project is open source
and where the open source development activity can be found.

In the past, many projects set up the developer site and infrastructure themselves. Over the
last decade or so, however, most open source projects — and almost all the new ones — just
use one of the "canned hosting" sites that have sprung up to offer these services for free to
open source projects. By far the most popular such site, as of early 2018, is GitHub (https://
github.com/), and if you don't have a strong preference about where to host, you should prob-
ably just choose GitHub; many developers are already familiar with it and have personal ac-
counts there. See the section called “Canned Hosting” [55] for a more detailed discus-
sion of the questions to consider when choosing a canned hosting site and for an overview of
the most popular ones.

Choosing a License and Applying It
This section is intended to be a very quick, very rough guide to choosing a license. Read
Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents [272] to under-
stand the detailed legal implications of the different licenses, and how the license you choose
can affect people's ability to mix your software with other software.

33

https://github.com/
https://github.com/

Getting Started

Synonyms: "free software license", "FSF-approved", "open source
license", and "OSI-approved"

The terms "free software license" and "open source license" are essentially synony-
mous, and I treat them so throughout this book.

Technically, the former term refers to licenses confirmed by the Free Software Foun-
dation as meeting the "four freedoms" of the Free Software Definition (FSD, see
https://www.gnu.org/philosophy/free-sw.html), while the latter term refers to licens-
es approved by the Open Source Initiative as meeting the Open Source Definition
(OSD, see https://opensource.org/osd). However, if you read the FSD and the OSD,
it becomes obvious that the two definitions delineate the same freedoms — which is
not surprising, given the historical background explained in the section called “"Free"
Versus "Open Source"” [10]. The inevitable, and in some sense deliberate, result is
that the two organizations have approved the same set of licenses.11

There are a great many free software licenses to choose from. Most of them we needn't con-
sider here, as they were written to satisfy the particular legal needs of some corporation or
person, and wouldn't be appropriate for your project. We will restrict ourselves to just the
most commonly used licenses; in most cases, you will want to choose one of them.

The "Do Anything" Licenses
If you're comfortable with your project's code potentially being used in proprietary programs,
then use an MIT-style license. It is the simplest of several minimal licenses that do little more
than assert nominal copyright (without actually restricting copying) and specify that the code
comes with no warranty. See the section called “Choosing a License” [279] for details.

The GPL
If you don't want your code to be used in proprietary programs, use the GNU General Pub-
lic License, version 3 (https://www.gnu.org/licenses/gpl.html). The GPL is probably the most
widely recognized free software license in the world today. This is in itself a big advantage,

11There actually are some minor differences between the sets of approved licenses, but they are not significant for our
purposes — or indeed for most practical purposes. In some cases, one or the other organization has simply not gotten
around to considering a given license, usually a license that is not widely-used anyway. There are also a few rarely-used
licenses that have clauses that formally conflict with the letter, if not the spirit, of one or the other definition. For exam-
ple, the OSD requires the license to allow redistribution under the exact same terms the software originally came with,
instead of just under some set of OSD-compliant terms, whereas the FSD goes the other way on this question. These dif-
ferences are exotic edge cases, however. For any license you are likely to be using, the terms "OSI-approved" and "FSF-
approved" can be treated as implying each other.

34

https://www.gnu.org/philosophy/free-sw.html
https://opensource.org/osd
https://www.gnu.org/licenses/gpl.html

Getting Started

since many potential users and contributors will already be familiar with it, and therefore
won't have to spend extra time to read and understand your license. See the section called
“The GNU General Public License” [281] for details.

If users interact with your code primarily over a network connection — that is, the
software is usually part of a hosted service, rather than being distributed to run client-
side — then consider using the GNU Affero GPL instead. The AGPL is just the GPL
with one extra clause establishing network accessibility as a form of distribution for
the purposes of the license. See the section called “The GNU Affero GPL: A Version
of the GNU GPL for Server-Side Code” [282] for more.

How to Apply a License to Your Software

Once you've chosen a license, you'll need to apply it to the software.

The first thing to do is state the license clearly on the project's front page. You don't need to
include the actual text of the license there; just give its name and make it link to the full li-
cense text on another page. That tells the public what license you intend the software to be
released under — but it's not quite sufficient for legal purposes. The other step is that the
software itself should include the license.

The standard way to do this is to put the full license text in a file called LICENSE (or
COPYING) included with the source code, and then at the top of each source file put a short
notice in a comment, naming the copyright date, holder, and license, and saying where to
find the full text of the license.

There are many variations on this pattern, so we'll look at just one example here. The GNU
GPL says to put a notice like this at the top of each source file:

Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

35

Getting Started

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>

It does not say specifically that the copy of the license you received along with the program
is in the file COPYING or LICENSE, but that's where it's usually put. (You could change the
above notice to state that directly, but there's no real need to.)

In general, the notice you put in each source file does not have to look exactly like the one
above, as long as it starts with the same notice of copyright holder and date,12 states the
name of the license, and makes clear where to view the full license terms. It's always best to
consult a lawyer, of course, if you can afford one.

Setting the Tone
So far we've covered one-time tasks you do during project setup: picking a license, arranging
the initial web site, etc. But the most important aspects of starting a new project are dynamic.
Choosing a mailing list address is easy; ensuring that the list's conversations remain on-topic
and productive is another matter entirely. For example, if the project is being opened up after
years of closed, in-house development, its development processes will change, and you will
have to prepare the existing developers for that change.

The first steps are the hardest, because precedents and expectations for future conduct have
not yet been set. Stability in a project does not come from formal policies, but from a shared,
hard-to-pin-down collective wisdom that develops over time. There are often written rules as
well, but they tend to be essentially a distillation of the intangible, ever-evolving agreements
that really guide the project. The written policies do not define the project's culture so much
as describe it, and even then only approximately.

There are a few reasons why things work out this way. Growth and high turnover are not as
damaging to the accumulation of social norms as one might think. As long as change does
not happen too quickly, there is time for new arrivals to learn how things are done, and af-
ter they learn, they will help reinforce those ways themselves. Consider how children's songs
survive for centuries. There are children today singing roughly the same rhymes as children
did hundreds of years ago, even though there are no children alive now who were alive then.
Younger children hear the songs sung by older ones, and when they are older, they in turn
will sing them in front of other younger ones. The children are not engaging in a conscious

12There is some leeway on exactly what the dates should indicate, and of course this book does not provide legal advice.
The strictest legal interpretation I've heard is that the date should show the years in which the file was modified for copy-
right purposes. In other words, for a file modified in 2012, 2018, and 2021, you would write "2012, 2018, 2021" — not
"2012-2021", because the file wasn't modified in most of the years in that range. Some projects just use a range anyway,
with one end being the file's creation year and the other end being the year of most recent modification, as that's so much
shorter and easier.

36

Getting Started

program of transmission, of course, but the reason the songs survive is nonetheless that they
are transmitted regularly and repeatedly. The time scale of free software projects may not be
measured in centuries (we don't know yet), but the dynamics of transmission are much the
same. The turnover rate is faster, however, and must be compensated for by a more active
and deliberate transmission effort.

This effort is aided by the fact that people generally show up expecting and looking for so-
cial norms. That's just how humans are built. In any group unified by a common endeavor,
people who join instinctively search for behaviors that will mark them as part of the group.
The goal of setting precedents early is to make those "in-group" behaviors be ones that are
useful to the project; once established, they will be largely self-perpetuating.

Following are some examples of specific things you can do to set good precedents. They're
not meant as an exhaustive list, just as illustrations of the idea that setting a collaborative
mood early helps a project tremendously. Physically, every developer may be working sep-
arately, but you can do a lot to make them feel like they're all working together in the same
room. The more they feel this way, the more time they'll want to spend on the project. I
chose these particular examples because situations like these seem to come up in most open
source projects, and should be seen as opportunities to start things off on the right foot.

Avoid Private Discussions
Even after you've taken the project public, you and the other founders will often find your-
selves wanting to settle difficult questions by private communications among an inner cir-
cle. This is especially true in the early days of the project, when there are so many important
decisions to make, and, usually, few people qualified to make them. All the obvious disad-
vantages of public discussions will loom palpably in front of you: the delay inherent in email
conversations, the need to leave sufficient time for consensus to form, the hassle of deal-
ing with naive newcomers who think they understand all the issues but actually don't (every
project has these; sometimes they're next year's star contributors, sometimes they stay naive
forever), the person who can't understand why you only want to solve problem X when it's
obviously a subset of larger problem Y, and so on. The temptation to make decisions behind
closed doors and present them as faits accomplis, or at least as the firm recommendations of
a united and influential voting block, will be very great.

Don't do it.

As slow and cumbersome as public discussion can be, it's almost always preferable in the
long run. Making important decisions in private is like spraying contributor repellent on your
project. No serious contributor would stick around for long in an environment where a secret
council makes all the big decisions behind closed doors. Furthermore, public discussion has
beneficial side effects that will last beyond whatever ephemeral technical question was at is-
sue:

37

Getting Started

• The discussion will help train and educate new developers. You never know how many
eyes are watching the conversation; even if most people don't participate, many may be
lurking silently, gleaning information about the software.

• The discussion will train you in the art of explaining technical issues to people who are not
as familiar with the software as you are. This is a skill that requires practice, and you can't
get that practice by talking to people who already know what you know.

• The discussion and its conclusions will be available in public archives forever after, en-
abling future discussions to avoid retracing the same steps. See the section called “Con-
spicuous Use of Archives” [187].

Finally, there is the possibility that someone on the list may make a real contribution to the
conversation, by coming up with an idea you never anticipated. It's hard to say how likely
this is; it just depends on the complexity of the code and degree of specialization required.
But if anecdotal evidence may be permitted, I would hazard that this is more likely than you
might expect. In the Subversion project, we (the founders) believed we faced a deep and
complex set of problems, which we had been thinking about hard for several months, and
we frankly doubted that anyone on the newly created mailing list was likely to make a real
contribution to the discussion. So we took the lazy route and started batting some technical
ideas back and forth in private emails, until an observer of the project13 caught wind of what
was happening and asked for the discussions to be moved to the public list. Rolling our eyes
a bit, we did — and were stunned by the number of insightful comments and suggestions
that quickly resulted. In many cases people offered ideas that had never even occurred to us.
It turned out there were some very smart people on that list; they'd just been waiting for the
right bait. It's true that the ensuing discussions took longer than they would have if we had
kept the conversation private, but they were so much more productive that it was well worth
the extra time.

Without descending into hand-waving generalizations like "the group is always smarter than
the individual" (we've all met enough groups to know better), it must be acknowledged that
there are certain activities at which groups excel. Massive peer review is one of them; gener-
ating large numbers of ideas quickly is another. The quality of the ideas depends on the qual-
ity of the thinking that went into them, of course, but you won't know what kinds of thinkers
are out there until you stimulate them with a challenging problem.

Naturally, there are some discussions that must be had privately; throughout this book we'll
see examples of those. But the guiding principle should always be: If there's no reason for it
to be private, it should be public.

13Credit where credit is due: the observer was Brian Behlendorf, and he was correctly insistent about the general impor-
tance of keeping all discussions public unless there was a specific need for privacy.

38

Getting Started

Making this happen requires action. It's not enough merely to ensure that all your own posts
go to the public list. You also have to nudge other people's unnecessarily private conver-
sations to the list too. If someone tries to start a private discussion with you and there's no
reason for it to be private, then it is incumbent on you to open the appropriate meta-discus-
sion immediately. Don't even comment on the original topic until you've either successful-
ly steered the conversation to a public place, or ascertained that privacy really was needed.
If you do this consistently, people will catch on pretty quickly and start to use the public fo-
rums by default — and will promote this norm to others where necessary.

Nip Rudeness in the Bud
From the very start of your project's public existence, you should maintain a zero-tolerance
policy toward rude or insulting behavior in its forums. Zero-tolerance does not mean tech-
nical enforcement per se. You don't have to remove people from the mailing list when they
flame another subscriber, or take away their commit access because they made derogato-
ry comments. (In theory, you might eventually have to resort to such actions, but only af-
ter all other avenues have failed — which, by definition, isn't the case at the start of the
project.) Zero-tolerance simply means never letting bad behavior slide by unnoticed. For ex-
ample, when someone posts a technical comment mixed together with an ad hominem at-
tack on some other developer in the project, it is imperative that your response address the ad
hominem attack as a separate issue unto itself, separate from the technical content.

It is unfortunately very easy, and all too typical, for constructive discussions to lapse into de-
structive flame wars. People will say things in email that they would never say face-to-face.
The topics of discussion only amplify this effect: in technical issues, people often feel there
is a single right answer to most questions, and that disagreement with that answer can only
be explained by ignorance, stupidity, or laziness. It's a short distance from calling someone's
technical proposal stupid to calling the person themselves stupid. In fact, it's often hard to tell
where technical debate leaves off and character attack begins, which is one reason why dras-
tic responses or punishments are not a good idea. Instead, when you think you see it happen-
ing, make a post that stresses the importance of keeping the discussion friendly, without ac-
cusing anyone of being deliberately poisonous. Such "Nice Police" posts do have an unfortu-
nate tendency to sound like a kindergarten teacher lecturing a class on good behavior:

First, let's please cut down on the (potentially) ad hominem comments; for
example, calling J's design for the security layer "naive and ignorant of
the basic principles of computer security." That may be true or it may not,
but in either case it's no way to have the discussion. J made his proposal in
good faith. If it has deficiencies, point them out, and we'll fix them or get a
new design. I'm sure M meant no personal insult to J, but the phrasing was
unfortunate, and we try to keep things constructive around here.

Now, on to the proposal. I think M was right in saying that...

39

Getting Started

As stilted as such responses sound, they have a noticeable effect. If you consistently call out
bad behavior, but don't demand an apology or acknowledgement from the offending party,
then you leave people free to cool down and show their better side by behaving more deco-
rously next time — and they will.

One of the secrets of doing this successfully is to never make the meta-discussion the main
topic. It should always be an aside, a brief preface to the main portion of your response.
Point out in passing that "we don't do things that way around here," but then move on to
the real content, so that you're giving people something on-topic to respond to. If someone
protests that they didn't deserve your rebuke, simply refuse to be drawn into an argument
about it. Either don't respond (if you think they're just letting off steam and don't require a
response), or say you're sorry if you overreacted and that it's hard to detect nuance in email,
then get back to the main topic. Never, ever insist on an acknowledgement, whether public or
private, from someone that they behaved inappropriately. If they choose of their own volition
to post an apology, that's great, but demanding that they do so will only cause resentment.

The overall goal is to make good etiquette be seen as one of the "in-group" behaviors. This
helps the project, because developers can be driven away (even from projects they like and
want to support) by flame wars. You may not even know that they were driven away; some-
one might lurk on the mailing list, see that it takes a thick skin to participate in the project,
and decide against getting involved at all. Keeping forums friendly is a long-term survival
strategy, and it's easier to do when the project is still small. Once it's part of the culture, you
won't have to be the only person promoting it. It will be maintained by everyone.

Codes of Conduct

In the decade since the first edition of this book in 2006, it has become somewhat more com-
mon for open source projects, especially the larger ones, to adopt an explicit code of conduct.
I think this is a good trend. As open source projects become, at long last, more diverse, the
presence of a code of conduct can remind participants to think twice about whether a joke is
going to be hurtful to some people, or whether — to pick a random example — it contributes
to a welcoming and inclusive atmosphere when an open source image processing library's
documentation just happens to use yet another picture of a pretty young woman to illustrate
the behavior of a particular algorithm. Codes of conduct remind participants that the mainte-
nance of a respectful and welcoming environment is everyone's responsibility.

An Internet search will easily find many examples of codes of conduct for open source
projects. The most popular one is probably the one at https://contributor-covenant.org/, so
naturally there's a positive feedback dynamic if you choose or adapt that one: more develop-
ers will be already familiar with it, plus you get its translations into other languages for free,
etc.

40

https://contributor-covenant.org/

Getting Started

A code of conduct will not solve all the interpersonal problems in your project. Furthermore,
if it is misused, it has the potential to create new problems — it's always possible to find peo-
ple who specialize in manipulating social norms and rules to harm a community rather than
help it (see the section called “Difficult People” [181]), and if you're particularly unlucky
some of those people may find their way into your project. It is always up to the project lead-
ership, by which I mean those whom others in the project tend to listen to the most, to en-
force a code of conduct, and to see to it that a code of conduct is used wisely. (See also the
section called “Recognizing Rudeness” [170].)

Some participants may genuinely disagree with the need to adopt a code at all, and argue
against it on the grounds that it could do more harm than good. Even if you feel they're
wrong, it is imperative that you help make sure they're able to state their view without be-
ing attacked for it. After all, disagreeing with the need for a code of conduct is not the same
as — is, in fact, entirely unrelated to — engaging in behavior that would be a violation of
the proposed code of conduct. Sometimes people confuse these two things, and need to be re-
minded of the distinction.14

In some projects, a code of conduct specifically for organizational or commercial partici-
pants — often one implies the other, but not always — may also be called for. If you see
organizational actors participating in your project in ways that might not be conducive to
the project's long-term health, consider creating a Commercial Code of Conduct (CCoC,
sometimes also expanded as Corporate Code of Conduct) or Organizational Code of Con-
duct (OCoC). Two examples15 are the General Guidelines for Commercial Entities and Oth-
ers Deploying Arches (on https://www.archesproject.org/code-of-conduct/) and the Byte-
code Alliance's Organizational Code of Conduct (which appears to still be a draft under con-
sideration as of this writing, but the draft text is available at https://github.com/bytecodeal-
liance/rfcs/blob/main/ORG_CODE_OF_CONDUCT.md and is a representative example).

Practice Conspicuous Code Review
One of the best ways to foster a productive development community is to get people look-
ing at each others' code — ideally, to get them looking at each others' code changes as those
changes arrive. Commit review (sometimes just called code review) is the practice of review-
ing commits as they come in, looking for bugs and possible improvements.

There are a couple of reasons to focus on reviewing changes, rather than on reviewing in-
place code that's already in source files. First, it just works better socially: when someone
reviews your change, she is interacting with work you did recently. That means if she com-
ments on it right away, you will be maximally interested in hearing what she has to say; six

14There's an excellent post by Christie Koehler at https://subfictional.com/2016/01/25/the-complex-reality-of-adopt-
ing-a-meaningful-code-of-conduct/ discussing this in much more depth.
15Disclosure: My company was involved in drafting both.

41

https://www.archesproject.org/code-of-conduct/
https://github.com/bytecodealliance/rfcs/blob/main/ORG_CODE_OF_CONDUCT.md
https://github.com/bytecodealliance/rfcs/blob/main/ORG_CODE_OF_CONDUCT.md
https://subfictional.com/2016/01/25/the-complex-reality-of-adopting-a-meaningful-code-of-conduct/
https://subfictional.com/2016/01/25/the-complex-reality-of-adopting-a-meaningful-code-of-conduct/

Getting Started

months later, you might not feel as motivated to engage, and in any case might not remember
the change very well. Second, looking at what changes in a codebase is a gateway to looking
at the rest of the code anyway: reviewing a change often causes one to look at the surround-
ing code, at the affected callers and callees elsewhere, at related module interfaces, etc.16

Commit review thus serves several purposes simultaneously. It's the most direct example
of peer review in the open source world, and helps to maintain software quality. Every bug
that ships in a piece of software got there by being committed and not detected; therefore, the
more eyes watch commits, the fewer bugs will ship. But commit review also serves an indi-
rect purpose: it confirms to people that what they do matters, because one obviously wouldn't
take time to review a commit unless one cared about its effect. People do their best work
when they know that others will take the time to evaluate it.

Reviews should be public. Even on occasions when I have been sitting in the same physical
room with another developer, and one of us has made a commit, we take care not to do the
review verbally in the room, but to send it to the appropriate online review forum instead.
Everyone benefits from seeing the review happen. People follow the commentary and some-
times find flaws in it; even when they don't, it still reminds them that review is an expected,
regular activity, like washing the dishes or mowing the lawn.

Some technical infrastructure is required to do change-by-change review effectively. In par-
ticular, setting up commit notifications is extremely useful. The effect of commit notifica-
tions is that every time someone commits a change to the central repository, an email or oth-
er subscribable notification goes out showing the log message and diffs (unless the diff is
too large; see diff [77], in the section called “Version Control Vocabulary” [73]).
The review itself might take place on a mailing list, or in a review tool such as Gerrit or the
GitHub "pull request" interface. See the section called “Commit Notifications / Commit
Emails” [85] for details.

Case study

In the Subversion project, we did not at first make a regular practice of code review. There
was no guarantee that every commit would be reviewed, though one might sometimes look
over a change if one were particularly interested in that area of the code. Bugs slipped in that
really could and should have been caught. A developer named Greg Stein, who knew the val-
ue of code review from past work, decided that he was going to set an example by reviewing
every line of every single commit that went into the code repository. Each commit anyone
made was soon followed by an email to the developer's list from Greg, dissecting the com-
mit, analyzing possible problems, and occasionally praising a clever bit of code. Right away,

16None of this is an argument against top-to-bottom code review, of course, for example to do a security audit. But while
that kind of review is important too, it's more of a generic development best practice, and is not as specifically relevant
to running an open source project as change-by-change review is.

42

Getting Started

he was catching bugs and non-optimal coding practices that would otherwise have slipped
by without ever being noticed. Pointedly, he never complained about being the only person
reviewing every commit, even though it took a fair amount of his time, but he did sing the
praises of code review whenever he had the chance. Pretty soon, other people, myself includ-
ed, started reviewing commits regularly too.

What was our motivation? It wasn't that Greg had consciously shamed us into it. But he had
proven that reviewing code was a valuable way to spend time, and that one could contribute
as much to the project by reviewing others' changes as by writing new code. Once he demon-
strated that, it became expected behavior, to the point where any commit that didn't get some
reaction would cause the committer to worry, and even ask on the list whether anyone had
had a chance to review it yet. Later, Greg got a job that didn't leave him as much time for
Subversion, and had to stop doing regular reviews. But by then, the habit was so ingrained
for the rest of us as to seem that it had been going on since time immemorial.

Start doing reviews from the very first commit. The sorts of problems that are easiest to catch
by reviewing diffs are security vulnerabilities, memory leaks, insufficient comments or API
documentation, off-by-one errors, caller/callee discipline mismatches, and other problems
that require a minimum of surrounding context to spot. However, even larger-scale issues
such as failure to abstract repeated patterns to a single location become spottable after one
has been doing reviews regularly, because the memory of past diffs informs the review of
present diffs.

Don't worry that you might not find anything to comment on, or that you don't know enough
about every area of the code. There will usually be something to say about almost every
commit; even where you don't find anything to question, you may find something to praise.
The important thing is to make it clear to every committer that what they do is seen and un-
derstood, that attention is being paid. Of course, code review does not absolve programmers
of the responsibility to review and test their changes before committing; no one should de-
pend on code review to catch things she ought to have caught on her own.

Be Open From Day One
Start your project out in the open from the very first day. The longer a project is run in a
closed source manner, the harder it is to open source later.17

Being open source from the start doesn't mean your developers must immediately take on
the extra responsibilities of community management. People often think that "open source"
means "strangers distracting us with questions", but that's optional — it's something you
might do down the road, if and when it makes sense for your project. It's under your control.

17This section started out as a blog post, http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html,
though it's been edited a lot for inclusion here.

43

http://archive.civiccommons.org/2011/01/be-open-from-day-one/index.html

Getting Started

There are still major advantages to be had by running the project out in open, publicly-visible
forums from the beginning. Conversely, the longer the project is run closed-source, the more
difficult it will be to open up later.

I think there's one underlying cause for this:

At each step in a project, programmers face a choice: to do that step in a manner compati-
ble with a hypothetical future open-sourcing, or do it in a manner incompatible with open-
sourcing. And every time they choose the latter, the project gets just a little bit harder to open
source.

The crucial thing is, they can't help choosing the latter occasionally — all the pressures of
development propel them that way. It's very difficult to give a future event the same present-
day weight as, say, fixing the incoming bugs reported by the testers, or finishing that feature
the customer just added to the spec. Also, programmers struggling to stay on budget will in-
evitably cut corners here and there. In Ward Cunningham's phrase, they will incur "technical
debt" (https://en.wikipedia.org/wiki/Technical_debt), with the intention of paying back that
debt later.

Thus, when it's time to open source, you'll suddenly find there are things like:

• Customer-specific configurations and passwords checked into the code repository;

• Sample data constructed from live (and confidential) information;

• Bug reports containing sensitive information that cannot be made public;

• Comments in the code expressing perhaps overly-honest reactions to the customer's latest
urgent request;

• Archives of correspondence among the developer team, in which useful technical informa-
tion is interleaved with personal opinions not intended for strangers;

• Licensing issues due to dependency libraries whose terms might have been fine for inter-
nal deployment (or not even that), but aren't compatible with open source distribution;

• Documentation written in the wrong format (e.g., that proprietary internal wiki your de-
partment uses), with no tool available to easily transform it into formats appropriate for
public distribution;

• Non-portable build dependencies that only become apparent when you try to move the
software out of your internal build environment;

• Modularity violations that everyone knows need cleaning up, but that there just hasn't been
time to take care of yet...

44

https://en.wikipedia.org/wiki/Technical_debt

Getting Started

• (This list could go on for a long time.)

The problem isn't just the work of actually doing the cleanups; it's the extra decision-mak-
ing they require. For example, if sensitive material was checked into the code repository in
the past, your team now faces a choice between cleaning it out of the historical revisions en-
tirely, so you can open source the entire (sanitized) history, or just cleaning up the latest revi-
sion and open-sourcing from that (sometimes called a "top-skim"). Neither method is wrong
or right — and that's the problem: now you've got one more discussion to have and one more
decision to make. In some projects, that decision gets made and reversed several times before
the final release. The thrashing itself is part of the cost.

Waiting Just Creates an Exposure Event

The other problem with opening up a developed codebase is that it creates a needlessly large
exposure event. Whatever issues there may be in the code (modularity corner-cutting, secu-
rity vulnerabilities, etc), they are all exposed to public scrutiny at once — the open-sourcing
event becomes an opportunity for the technical blogosphere to pounce on the code and see
what they can find.

Contrast that with the scenario where development was done in the open from the beginning:
code changes come in one at a time, so problems are handled as they come up (and are often
caught sooner, since there are more eyeballs on the code). Because changes reach the pub-
lic at a low, continuous rate of exposure, no one blames your development team for the occa-
sional corner-cutting or flawed code checkin. Everyone's been there, after all; these tradeoffs
are inevitable in real-world development. As long as the technical debt is properly recorded
in "FIXME" comments and bug reports, and any security issues are addressed promptly, it's
fine. Yet if those same issues were to appear suddenly all at once, unsympathetic observers
may jump on the aggregate exposure in a way they never would have if the issues had come
up piecemeal in the normal course of development.

(These concerns apply even more strongly to government software projects; see the sec-
tion called “Being Open Source From Day One is Especially Important for Government
Projects” [123].)

The good news is that these are all unforced errors. A project incurs little extra cost by avoid-
ing them in the simplest way possible: by running in the open from Day One.

"In the open" means the following things are publicly accessible, in standard formats, from
the first day of the project: the code repository, bug tracker, design documents, user docu-
mentation, wiki (if any), and developer discussion forums. It also means the code and docu-
mentation are placed under an open source license, of course. And it means that your team's
day-to-day work takes place in the publicly visible area.

45

Getting Started

"In the open" does not have to mean: allowing strangers to check code into your repository
(they're free to copy it into their own repository, if they want, and work with it there); allow-
ing anyone to file bug reports in your tracker (you're free to choose your own QA process,
and if allowing reports from strangers doesn't help you, you don't have to do it); reading and
responding to every bug report filed, even if you do allow strangers to file; responding to
every question people ask in the forums (even if you moderate them through); reviewing
every patch or suggestion posted, when doing so may cost valuable development time; etc.

Think of it this way:

You open source your code, not your time.

Your code is infinitely replicable; your time is not, and you may protect it however you
need to. You get to determine the point at which engaging with outside users and developers
makes sense for your project. In the long run it usually does, and most of this book is about
how to do it effectively. But the pace of engagement is always under your control. Develop-
ing in the open does not change this, it just ensures that everything done in the project is, by
definition, done in a way that's compatible with being open source.

Opening a Formerly Closed Project
It's best to avoid being in the situation of opening up a closed project in the first place; just
start the project in the open if you can. But if it's too late for that and you find yourself
opening up an existing project, perhaps with active developers accustomed to working in a
closed-source environment, there are certain common issues that tend to arise. You can save
a lot of time and trouble if you are prepared for them.

Some of these issues are essentially mechanical, and for them the section called “Be Open
From Day One” [43] can serve as a checklist. For example, if your code depends on
proprietary libraries that are not part of the standard distribution of your target operating
system(s), you will need to find open source replacements; if there is confidential con-
tent — e.g., unpublishable comments, passwords or site-specific configuration informa-
tion that cannot easily be changed, confidential data belonging to third parties, etc — in the
project's version control history, then you may have to release a "top-skim" version, that is,
restart the version history afresh from the current version as of the moment you open source
the code; and so on.

But there can be social and managerial issues too, and they are often more significant in the
long run than the mere mechanical concerns. You need to make sure everyone on the devel-
opment team understands that a big change is coming — and you need to understand how it's
going to feel from their point of view.

46

Getting Started

Try to imagine how the situation looks to them: formerly, all code and design decisions were
made with a group of other programmers who knew the software more or less equally well,
who all received the same pressures from the same management, and who all know each oth-
ers' strengths and weaknesses. Now you're asking them to expose their code to the scruti-
ny of random strangers, who will form judgements based only on the code, with no aware-
ness of what business pressures may have forced certain decisions. These strangers will
ask lots of questions, questions that jolt the existing developers into realizing that the docu-
mentation they worked so hard on is still inadequate (this is inevitable). To top it all off, the
newcomers are unknown, faceless entities. If one of your developers already feels insecure
about his skills, imagine how that will be exacerbated when newcomers point out flaws in
code he wrote, and worse, do so in front of his colleagues. Unless you have a team of per-
fect coders, this is unavoidable — in fact, it will probably happen to all of them at first. This
is not because they're bad programmers; it's just that any program above a certain size has
bugs, and peer review will spot some of those bugs (see the section called “Practice Conspic-
uous Code Review” [41]). At the same time, the newcomers themselves won't be subject
to much peer review at first, since they can't contribute code until they're more familiar with
the project. To your developers, it may feel like all the criticism is incoming, never outgoing.
Thus, there is the danger of a siege mentality taking hold among the old hands.

The best way to prevent this is to warn everyone about what's coming, explain it, tell them
that the initial discomfort is perfectly normal, and reassure them that it's going to get better.
Some of these warnings should take place privately, before the project is opened. But you
may also find it helpful to remind people on the public lists that this is a new way of devel-
opment for the project, and that it will take some time to adjust. The very best thing you can
do is lead by example. If you don't see your developers answering enough newbie questions,
then just telling them to answer more isn't going to help. They may not have a good sense of
what warrants a response and what doesn't yet, or it could be that they don't have a feel for
how to prioritize coding work against the new burden of external communications. The way
to get them to participate is to participate yourself. Be on the public mailing lists, and make
sure to answer some questions there. When you don't have the expertise to field a question,
then visibly hand it off to a developer who does — and watch to make sure she follows up
with an answer, or at least a response. It will naturally be tempting for the longtime develop-
ers to lapse into private discussions, since that's what they're used to. Make sure you're sub-
scribed to the internal mailing lists on which this might happen, so you can ask that such dis-
cussions be moved to the public lists right away.

If you expect the newly-public project to start involving developers who are not paid direct-
ly for their work — and there are usually at least a few such developers on most successful
open source projects — see Chapter 5, Organizations and Money: Businesses, Non-Profits,
and Governments [116] for discussion of how to mix paid and unpaid developers success-
fully.

47

Getting Started

Announcing
Once the project is presentable — not perfect, just presentable — you're ready to announce it
to the world.

This is a simpler process than you might expect. First, set up the announcement pages at your
project's home site, as described in the section called “Announcing Releases and Other Major
Events” [195]). Then, post announcements in the appropriate forums. There are two kinds
of forums: generic forums that display many kinds of new project announcements, and top-
ic-specific forums where your project would be welcome news.

Make sure the announcement includes key words and phrases that will help people find your
project in search engines. A good test is that if someone does a search for "open source foo
bar baz", and your project is a credible offering for foo, bar, and baz, then it should be on the
first page of results. (Unless you have a lot of open source competitors — but you don't, be-
cause you read the section called “But First, Look Around” [16], right?)

As of early 2022, the best general forum for announcements is probably https://news.y-
combinator.com/. While you are welcome to submit your project there, note that it will have
to successfully climb the word-of-mouth / upvote tree to get featured on the front page. The
subreddit forums related to https://www.reddit.com/r/opensource/, https://www.reddit.com/r/
programming/, and https://www.reddit.com/r/software/ work in a similar way. While it's
good news for your project if you can get mentioned in a place like that, I hesitate to con-
tribute to the marketing arms race by suggesting any concrete steps to accomplish this. Use
your judgement and try not to spam.

You might also consider submitting an entry for your project at the FSF's Free Software Di-
rectory https://directory.fsf.org/, though that is more about helping its long-term findability
rather than about soliciting attention at the moment of launch.

Topic-specific forums are probably where you'll get the most interest, of course. Think of
discussion forums where an announcement of your project would be on-topic and of inter-
est — you might already be a member of some of them — and post there. Be careful to make
exactly one post per forum, and to direct people to your project's own discussion areas for
follow-up discussion (when posting by email, you can do this by setting the Reply-to
header). Your announcement should be short and get right to the point, and the Subject line
should make it clear that it is an announcement of a new project:

To: discuss@some.forum.about.search.indexers
Subject: [ANNOUNCE] Scanley, a new open source full-text indexer.
Reply-to: dev@scanley.org

48

https://news.ycombinator.com/
https://news.ycombinator.com/
https://www.reddit.com/r/opensource/
https://www.reddit.com/r/programming/
https://www.reddit.com/r/programming/
https://www.reddit.com/r/software/
https://directory.fsf.org/

Getting Started

This is a one-time post to announce the creation of the Scanley
project, an open source full-text indexer and search engine with a
rich API, for use by programmers in providing search services for
large collections of text files. Scanley already has running code,
is under active development, and is looking for both developers and
testers.

Home page: http://www.scanley.org/

Features:
 - Searches plain text, HTML, and XML
 - Word or phrase searching
 - (planned) Fuzzy matching
 - (planned) Incremental updating of indexes
 - (planned) Indexing of remote web sites
 - (planned) Long-distance mind-reading

Requirements:
 - Python 3.9 or higher
 - SQLite 3.34 or higher

For more information, please come find us at scanley.org!

Thank you,
-J. Random

(See the section called “Publicity” [195] for advice on announcing subsequent releases
and other project events.)

There is an ongoing debate in the free software world about whether it is necessary to begin
with running code, or whether a project can benefit from being announced even during the
design/discussion stage. I used to think starting with running code was crucial, that it was
what separated successful projects from toys, and that serious developers would only be at-
tracted to software that already does something concrete.

This turned out not to be the case. In the Subversion project, we started with a design doc-
ument, a core of interested and well-connected developers, a lot of fanfare, and no running
code at all. To my complete surprise, the project acquired active participants right from the
beginning, and by the time we did have something running, there were quite a few develop-
ers already deeply involved. Subversion is not the only example; the Mozilla project was also
launched without running code, and is now a successful and popular web browser.

49

Getting Started

On the evidence of this and other examples, I have to back away from the assertion that run-
ning code is absolutely necessary for launching a project. Running code is still the best foun-
dation for success, and a good rule of thumb would be to wait until you have it before an-
nouncing your project.18 However, there may be circumstances where announcing earlier
makes sense. I do think that at least a well-developed design document, or else some sort of
code framework, is necessary — of course it may be revised based on public feedback, but
there has to be something concrete, something more tangible than just good intentions, for
people to sink their teeth into.

Whenever you announce, don't expect a horde of participants to join the project immediate-
ly afterward. Usually, the result of announcing is that you get a few casual inquiries, a few
more people join your mailing lists, and aside from that, everything continues pretty much as
before. But over time, you will notice a gradual increase in participation from both new code
contributors and users.

Announcement is merely the planting of a seed. It can take a long time for the news to
spread. If the project consistently rewards those who get involved, the news will spread,
though, because people want to share when they've found something good. If all goes well,
the dynamics of exponential communications networks will slowly transform the project into
a complex community, where you don't necessarily know everyone's name and can no longer
follow every single conversation. The next chapters are about working in that environment.

18Note that announcing your project usually comes long after you have open sourced the code. My advice to consid-
er carefully the timing of your announcement should not be taken as advice to delay open sourcing the code — ideally,
your project should be open source and publicly visible from the very first moment of its existence, and this is entirely
independent of when you announce it. See the section called “Be Open From Day One” [43] for more.

50

Chapter 3. Technical
Infrastructure

Free software projects rely on collaboration technologies: tools that support the selective
capture and integration of digitally-expressed human intentions about a shared project. The
more skilled you are at using these tools, and at persuading others to use them, the more suc-
cessful your project will be.

This only becomes more true as the project grows. Smart information management is what
prevents open source projects from collapsing under the weight of Brooks' Law,1 which
states that adding more people to a late software project makes it later. Fred Brooks observed
that the complexity of communications in a project increases as the square of the number of
participants. When only a few people are involved, everyone can easily talk to everyone else,
but when hundreds of people are involved, it is no longer possible for each person to remain
constantly aware of what everyone else is doing. If good free software project management
is about making everyone feel like they're all working together in the same room, the obvious
question is: what happens when everyone in a crowded room tries to talk at once?

This problem is not new. In real-world crowded rooms, the solution is parliamentary proce-
dure: formal guidelines for how to have real-time discussions in large groups, how to make
sure important dissents are not lost in floods of "me-too" comments, how to form subcom-
mittees, how to recognize and record when decisions are made, etc. An important part of par-
liamentary procedure is specifying how the group interacts with its information management
system. Some remarks are made "for the record", others are not. The record itself is sub-
ject to direct manipulation, and is understood to be not a literal transcript of what occurred
but rather a representation of what the group is willing to agree occurred. The record is not
monolithic; it takes different forms for different purposes. It comprises the minutes of indi-
vidual meetings, the complete collection of all minutes of all meetings, summaries, agendas
and their annotations, committee reports, reports from correspondents not present, lists of ac-
tion items, etc.

Because the Internet is not really a room, we can dispense with those parts of parliamentary
procedure that keep some people quiet while others are speaking. But when it comes to infor-
mation management techniques, well-run open source projects are parliamentary procedure
on steroids. Since almost all communication in open source projects happens in writing, elab-
orate systems have evolved for routing and labeling data appropriately, for minimizing repe-
titions so as to avoid spurious divergences, for storing and retrieving data, for correcting bad

1From his book The Mythical Man Month, 1975. See https://en.wikipedia.org/wiki/The_Mythical_Man-Month, https://
en.wikipedia.org/wiki/Brooks_Law, and https://en.wikipedia.org/wiki/Fred_Brooks.

51

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/Brooks_Law
https://en.wikipedia.org/wiki/Brooks_Law
https://en.wikipedia.org/wiki/Fred_Brooks

Technical Infrastructure

or obsolete information, and for associating disparate bits of information with each other as
new connections are observed.

Active participants in open source projects internalize many of these techniques, and will
often perform complex manual tasks to ensure that information is routed correctly. But the
whole endeavor ultimately depends on sophisticated software support. As much as possi-
ble, the communications media themselves should do the routing, labeling, and recording,
and should make the information available to humans in the most convenient way possible.
In practice, of course, humans will still need to intervene at many points in the process, and
it's important that the software make such interventions convenient too. But in general, if the
humans take care to label and route information accurately on its first entry into the system,
then the software should be configured to make as much use of that metadata as possible.

The advice in this chapter is intensely practical, based on experiences with specific software
and usage patterns. But the point is not just to teach a particular collection of techniques. It is
also to demonstrate, by means of many small examples, the overall attitude that will best en-
courage good information management in your project. Promoting this attitude will involve
a combination of technical skills and people skills. The technical skills are essential because
information management software always requires configuration, plus a certain amount of
ongoing maintenance and tweaking as new needs arise (for example, see the discussion of
how to handle project growth in the section called “Pre-Filtering the Bug Tracker” [91]).
The people skills are necessary because the human community also requires maintenance:
it's not always immediately obvious how to use these tools to full advantage, and in some
cases projects have conflicting conventions (for example, see the discussion of setting Re-
ply-to headers on outgoing mailing list posts, in the section called “Message Forums /
Mailing Lists” [59]). Everyone involved with the project will need to be encouraged, at
the right times and in the right ways, to do their part to keep the project's information well
organized. The more interested the contributor, the more complex and specialized the tech-
niques she will be willing to learn.

The right techniques for your project may change over time, as collaboration technology
changes and as your project changes. You may finally get everything configured just the
way you want it, and have most of the community participating, but then project growth will
make some of those practices unscalable. Or project growth may stabilize, and the develop-
er and user communities settle into a comfortable relationship with the technical infrastruc-
ture, but then someone will come along and invent a whole new information management
service, and pretty soon newcomers will be asking why your project doesn't use it — for ex-
ample, this happened to a lot of free software projects that predate the invention of the wiki
(see https://en.wikipedia.org/wiki/Wiki), and more recently has been happening to projects
whose workflows were developed before the rise of GitHub PRs (see the section called “Pull
Requests / Merge Requests” [84]) as the canonical way to package proposed contribu-
tions. Many infrastructure questions are matters of judgement, involving tradeoffs between
the convenience of those producing information and the convenience of those consuming it,

52

https://en.wikipedia.org/wiki/Wiki

Technical Infrastructure

or between the time required to configure information management software and the benefit
it brings to the project.

Beware of the temptation to over-automate, that is, to automate things that really require hu-
man attention. Technical infrastructure is important, but what makes a free software project
work is care — and intelligent expression of that care — by the humans involved. The tech-
nical infrastructure is really about giving humans easy opportunities to apply care.

What a Project Needs
Most open source projects offer at least this minimum, standard set of tools for managing in-
formation:

Web site

Primarily a centralized, one-way conduit of information from the project out to the pub-
lic and to participants. The web site may also serve as a portal leading to other project
tools. See the section called “Web Site” [54].

Message forums / Mailing lists

Usually the most active communications forum in the project, and the "medium of
record." See the section called “Message Forums / Mailing Lists” [59].

Version control

Enables developers to manage code changes conveniently, including reverting and
"change porting". Enables everyone to watch what's happening to the code. See the sec-
tion called “Version Control” [73].

Bug tracking

Enables developers to keep track of what they're working on, coordinate with each oth-
er, and plan releases. Enables everyone to query the status of bugs and record informa-
tion (e.g., reproduction recipes) about particular bugs. Can be used for tracking not on-
ly bugs, but also tasks, releases, new features, etc. See the section called “Bug Track-
er” [87].

Real-time chat

A place for quick, lightweight discussions and question/answer exchanges. Not always
archived completely. See the section called “Real-Time Chat Systems” [92].

53

Technical Infrastructure

Each tool in this set addresses a distinct need, but their functions are also interrelated, and the
tools must be made to work together. Below we will examine how they can do so, and more
importantly, how to get people to use them.

You may be able to avoid a lot of the headache of choosing and configuring many of these
tools by using a canned hosting site: an online service that offers prepackaged, templatized
web services with some or all of the collaboration tools needed to run a free software project.
See the section called “Canned Hosting” [55] for a discussion of the advantages and dis-
advantages of canned hosting.

Web Site
For our purposes, the web site means web pages devoted to helping people participate in the
project as developers, documenters, etc. Note that this may be different from the main user-
facing web site. In many projects, users have different needs and often (statistically speak-
ing) a different mentality from the developers. The kinds of web pages most helpful to users
are not always the same as those helpful for developers. Don't try to make a "one size fits all"
web site just to save some writing and maintenance effort: you'll end up with a site that is not
quite right for either audience.

The two types of sites should cross-link, of course, and in particular it's important that the
user-oriented site have, tucked a way in a corner somewhere, a clear link to the developers'
site, since most new developers will start out at the user-facing pages and look for a path
from there to the developers' area.

An example may make this clearer. As of this writing in February 2022, the office suite Li-
breOffice has its main user-oriented web site at https://www.libreoffice.org/, as you'd expect.
If you were a user wanting to download and install LibreOffice, you'd start there, go straight
to the "Download" link, and so on. But if you were a developer looking to fix a bug in Libre-
Office, you might start at https://www.libreoffice.org/, but you'd be looking for a link that
says something like "Developers", or "Development", or "Get Involved" — in other words,
you'd be looking for the gateway to the development area.

LibreOffice, like other large projects, has a few different gateways to developer-land. There's
a prominent link partway down the page that says "Get Involved", and at the top there's also
a dropdown menu named "Improve It" that offers a number of paths to participation, includ-
ing a "Developers" item.

The "Get Involved" page is aimed at the broadest possible range of potential contributors:
developers, yes, but also documenters, quality-assurance testers, marketing helpers, web in-
frastructure experts, financial or in-kind donors, interface designers, support forum helpers,
etc. This frees up the "Developers" page to target the rather narrower audience of program-

54

https://www.libreoffice.org/
https://www.libreoffice.org/

Technical Infrastructure

mers interested in improving the LibreOffice code. The set of links and short descriptions
provided on both pages is admirably clear and concise: you can tell immediately from look-
ing whether you're in the right place for what you want do, and if so what the next thing to
click on is. The "Development" page gives some information about where to find the code,
how to contact the other developers, how to file bugs, and things like that, but most impor-
tantly it points to what most seasoned open source contributors would instantly recognize as
the real gateway to actively-maintained development information: the development wiki at
https://wiki.documentfoundation.org/Development.

This division into two contributor-facing gateways, one for all kinds of contributions and an-
other for coders specifically, is probably right for a large, multi-faceted project like Libre-
Office. You'll have to use your judgement as to whether that kind of subdivision is appropri-
ate for your project; at least at the beginning, it probably isn't. It's better to start with one uni-
fied contributor gateway, aimed at all the types of contributors you expect, and if that page
ever gets large enough or complex enough to feel unwieldy — listen carefully for complaints
about it, since you and other long-time participants will be naturally desensitized to weak-
nesses in introductory pages! — then you can divide it up however seems best.

From a technical point of view there is not much to say about setting up the project web site.
Web hosting is easy to come by, and most of the important things to say about layout and
arrangement were covered in the previous chapter. The web site's main function is to present
a clear and welcoming overview of the project, and to bind together the various collaboration
tools (the version control system, bug tracker, etc). To save time and effort, many projects
just use one of the canned hosting services, as described below.

Canned Hosting

A canned hosting site is an online service that offers some or all of the online collaboration
tools needed to run a free software project. At a minimum, a canned hosting site offers public
version control repositories and bug tracking; most also offer wiki space, many offer mail-
ing list hosting2 too, and some offer continuous integration testing3 and other services4. For
many projects, canned hosting provides a perfectly adequate developer-oriented entry point
to the project, and there is no need to set up a separate web site.

2Note that even when a canned hosting site doesn't offer message forums as a standalone feature, it will usually offer rich
notification and subscription/watch features attached to its bug tracker and version control system, such that participants
can effectively have a message-forum-style discussion centered around a particular bug or change. While these features
are very useful, they are not a full substitute for first-class message forums as described in the section called “Message
Forums / Mailing Lists” [59].
3See automated-testing.
4Note that for successful free software projects, interested commercial entities will eventually often step up to fund many
of these services anyway; see the section called “Providing Build Farms and Development Servers” [142] for further
discussion of this.

55

https://wiki.documentfoundation.org/Development
automated-testing

Technical Infrastructure

There are two main advantages to using a canned site. The first is server maintenance: up-
time monitoring, operating system upgrades, etc. Having someone else handle that is one less
thing to worry about. The second advantage is simplicity. They have already chosen a bug
tracker, a version control system, perhaps discussion forum software, and everything else
you need to run a project. They've configured the tools, arranged single-sign-on authentica-
tion where appropriate, are taking care of backups for all the data stored in the tools, etc. You
don't need to make many decisions. All you have to do is fill in a registration form, press a
button, and suddenly you've got a project development web site.

These are pretty significant benefits. The disadvantage, of course, is that you must ac-
cept their choices and configurations, even if something different would be better for your
project. Usually canned sites are adjustable within certain narrow parameters, but you will
never get the fine-grained control you would have if you set up the site yourself and had full
administrative access to the server.

A perfect example of this is the handling of generated files. Certain project web pages may
be generated files — for example, there are systems for keeping FAQ data in an easy-to-ed-
it master format, from which HTML, PDF, and other presentation formats can be generated.
As explained in the section called “Version Everything” [79], you wouldn't want to ver-
sion the generated formats, only the master file. But when your web site is hosted on some-
one else's server, it may be difficult to set up a custom hook to regenerate the online HTML
version of the FAQ whenever the master file is changed.

If you choose a canned site, try to leave open the option of switching to a different site lat-
er, by using a custom domain name as the project's development home address. You can for-
ward that URL to the canned site, or have a fully customized development home page at the
main URL and link to the canned site for specific functionality. Just try to arrange things
such that if you later decide to use a different hosting solution, the project's main address
doesn't need to change.

If you're not sure whether to use canned hosting, then you should probably use canned host-
ing. These sites have integrated their services in myriad ways (just one example: if a commit
mentions a bug ticket number using a certain format, then people browsing that commit later
will find that it automatically links to that ticket), ways that would be laborious for you to re-
produce, especially if it's your first time running an open source project. The universe of pos-
sible configurations of collaboration tools is vast and complex, but the same set of choices
has faced everyone running an open source project and there are some settled solutions now.
Each of the canned hosting sites implements a reasonable subset of that solution space, and
unless you have reason to believe you can do better, your project will probably run best by
just using one of those sites.

56

Technical Infrastructure

Choosing a Canned Hosting Site

There are now so many sites providing free-of-charge canned hosting for projects released
under open source licenses that there is not space here to review the field.

So I'll make this easy:

If you don't know what to choose, then choose GitHub (https://github.com/). It's by far the
most popular and appears set to stay that way for some years to come. It has a good set of
features and integrations. Many developers are already familiar with GitHub and have an ac-
count there. It offers APIs at https://develop.github.com/ for interacting programmatically
with project resources, and starting in 2020 it introduced message forums.5

If you're not convinced by GitHub (for example because your project uses, say, Mercurial in-
stead of Git for version control), but you aren't sure where to host, take a look at Wikipedia's
thorough comparison at https://en.wikipedia.org/wiki/Comparison_of_open_source_soft-
ware_hosting_facilities; it's the first place to look for up-to-date, comprehensive information
on open source project hosting options.

Hosting on Fully Open Source Infrastructure

Although all the canned hosting sites use plenty of free software in their stack, most of them
also wrote some proprietary code to glue it all together. In these cases the hosting environ-
ment itself is not fully open source, and thus cannot be easily reproduced by others. For ex-
ample, while Git itself is free software, GitHub is a hosted service running partly with propri-
etary software — if you leave GitHub, you can't take a copy of their infrastructure with you,
at least not all of it.

Some projects would prefer a canned hosting site that runs an entirely free software infra-
structure. This might be to preserve and signal their commitment to software freedom, and in
some cases might also be due to immediate utilitarian considerations — for example, politi-
cally sensitive projects that are worried about being deplatformed want to know that they can
reproduce their project's hosting independently should it ever become necessary.

Fortunately, there are places to obtain fully free-software commercial hosting. I will list a
few examples below (as of early 2020), albeit with no pretense of completeness.

GitLab (https://gitlab.com/)

GitLab offers an excellent collaboration platform that comes in two versions: fully free-
software (they call this their "Community Edition") and proprietary (which they call

5That is, message forums as in the section called “Message Forums / Mailing Lists” [59]. The feature's name is
"GitHub Discussions"; you have to turn it on for your repository, as it's not currently on by default.

57

https://github.com/
https://develop.github.com/
https://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
https://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
https://gitlab.com/

Technical Infrastructure

their "Enterprise Edition".6 The proprietary edition is hosted by GitLab.com, and has a
few features the open source edition doesn't have. Interestingly, GitLab.com themselves
don't offer hosting of the strictly open source edition, but some other companies do.
Two of them are GitLabHost BV (https://www.gitlabhost.com/) and 2nd Watch (https://
www.2ndwatch.com/); you can probably find others by searching https://partners.git-
lab.com/. (It's also pretty easy to set up your own instance of GitLab. My own company
did so at https://code.librehq.com/ and it was fairly simple, although we have to perform
security upgrades frequently. This does not mean that GitLab is disproportionately likely
to have security problems; it just means that GitLab is very popular and therefore a lot of
people are available to detect and report problems.)

Sourcehut (https://sourcehut.org/ and https://sr.ht/)

Sourcehut offers project hosting with both Git and Mercurial available as version control
systems. It is designed to be light, fast, and developer-focused: there is no tracking nor
advertising, all of its features work without in-browser Javascript, and many of its fea-
tures work without even requiring a user account (e.g., some email-driven interactions
with the bug tracker). As of late 2023, it's officially still in "public alpha", but it is stable
and is fine for projects that need reliable hosting.

Codeberg (https://codeberg.org/)

Codeberg offers zero-cost project hosting for free and open source projects. It's run
by a non-profit organization in Germany that supports free (libre) culture, is feature-
ful, and is under active development as of late 2023. Codeberg's underlying platform
is Forgejo (codeberg.org/forgejo/forgejo [https://codeberg.org/forgejo/forgejo]), which
is itself a community fork made in reaction to an unexpected corporate move in an-
other free software project (see forgejo.org/2022-12-15-hello-forgejo [https://forge-
jo.org/2022-12-15-hello-forgejo/] for details).

Should you host your project on fully open source infrastructure? I can't answer that ques-
tion for you, since it ultimately depends on you and your project's philosophical positions.
However, as a practical matter, I cannot say I've seen any evidence that the degree of soft-
ware-freedom of the hosting platform has much effect on a project's success. The vast ma-
jority of developers who work on free software projects seem to be willing to participate
through a non-free hosting platform when that's what the project is using.

Whether the hosting platform is itself free software or not, it is crucial to be able to interact
with project data in automatable ways, and to have a way to export data out of the hosting
platform. A site that meets these criteria can never truly lock you in, and will even be some-
what extensible, via its programmatic interface.

6See the section called “"Commercial" vs "Proprietary"” [147] for why this terminology deserves scare quotes.

58

https://www.gitlabhost.com/
https://www.2ndwatch.com/
https://www.2ndwatch.com/
https://partners.gitlab.com/
https://partners.gitlab.com/
https://code.librehq.com/
https://sourcehut.org/
https://sr.ht/
https://codeberg.org/
https://codeberg.org/forgejo/forgejo
https://codeberg.org/forgejo/forgejo
https://forgejo.org/2022-12-15-hello-forgejo/
https://forgejo.org/2022-12-15-hello-forgejo/
https://forgejo.org/2022-12-15-hello-forgejo/

Technical Infrastructure

Of course, all the above applies only to the servers of the hosting site. Your project itself
should never require participants to run proprietary software on their own machines.7

Anonymity and Involvement

A problem that is not strictly limited to the canned sites, but is most often found there, is
the over-requirement of user registration to participate in various aspects of the project. The
proper degree of requirement is a bit of a judgement call. User registration helps prevent
spam, for one thing, and even if every commit gets reviewed you still probably don't want
anonymous8 strangers pushing changes into your repository, for example.

But sometimes user registration ends up being required for tasks that ought to be permitted to
unregistered visitors, especially the ability to file tickets in the bug tracker, and to comment
on existing tickets. By requiring a logged-in username for such actions, the project raises the
involvement bar for what should be quick, convenient tasks. It also changes the demograph-
ics of who files bugs, since those who take the trouble to set up a user account at the project
site are hardly a random sample even from among users who are willing to file bugs (who
in turn are already a biased subset of all the project's users). Of course, one wants to be able
to contact someone who's entered data into the ticket tracker, but having a field where she
can enter her email address (if she wants to) would be sufficient for that. If a new user spots
a bug and wants to report it, she'll only be annoyed at having to fill out an account creation
form before she can enter the bug into the tracker. She may simply decide not to file the bug
at all.

If you have control over which actions can be done anonymously, make sure that at least all
read-only actions are permitted to non-logged-in visitors, and if possible that data entry por-
tals, such as the bug tracker, that tend to bring information from users to developers, can also
be used anonymously, although of course anti-spam techniques, such as captchas, may still
be necessary.

Message Forums / Mailing Lists
Not all projects need to use discussion forum software. For relatively small, focused projects
that are organized around a single code repository, the email gateway features of the bug

7The exception to this is proprietary Javascript code that is received from the hosting site and run confined or "sand-
boxed" in one tab in the user's browser. The question of whether such code is conceptually an extension of the server, or
should be thought of as running on the client machine even though in some senses it has more access to server resources
than it does to client resources, is a deep and ongoing debate. We won't settle it here, but the issue is at least more com-
plex than just which CPU is executing the instructions.
8Pseudonymous is another matter. As long as a consistent identity has accrued reputation, you may not need to know
who it actually is.

59

Technical Infrastructure

tracker (as discussed in the section called “Bug Tracker” [87] later in this chapter) may
be enough to sustain most conversations. When a non-technical topic needs to be discussed,
someone can just create an issue ticket — a fake bug report, essentially — for the topic and
conduct the discussion there. So if you think your project will get along fine without forums,
you can skip this section and just try that. It will be obvious pretty quickly if you do need
them.

Larger and more complex projects, however, will almost always benefit from having dedicat-
ed discussion forums. This is partly because there will be many conversations that are not at-
tached to a specific bug, and partly because the larger the project, the more important it is to
keep the bug tracker focused on actual bugs and have a separate place for other kinds of dis-
cussions.

For a long time, discussion forums were mainly mailing lists, but the distinction between
mailing lists and Web-based forums is, thankfully, slowly disappearing. Services like Google
Groups (https://groups.google.com/), which is not itself open source, and Discourse (http://
www.discourse.org/), which is, have established that cross-accessibility of message forums
as mailing lists and vice versa is the minimum bar to meet, and modern discussion manage-
ment systems reflect this.

Because of this nearly-completed unification between email lists and web-based forums9, I
will use the terms message forum and mailing list more or less interchangeably. They refer
to any kind of message-based forum where posts are linked together in threads (topics), peo-
ple can subscribe, archives of past messages can be browsed, and the forum can be interacted
with via email or via a web browser.

If a user is exposed to any channel besides a project's web pages, it is most likely to be one
of the project's message forums. But before she experiences the forum itself, she will experi-
ence the process of finding the right forum. Your project should have a prominently-placed
description of all the available public forums, to give newcomers guidance in deciding which
ones to browse or post to first. A typical such description might say something like this:

The mailing lists are the main day-to-day communication channels for the
Scanley community. You don't have to be subscribed to post to a list, but
if it's your first time posting (whether you're subscribed or not), your mes-
sage may be held in a moderation queue until a human moderator has a
chance to confirm that the message is not spam. We're sorry for this delay;
blame the spammers who make it necessary.

Scanley has the following lists:

9Which was a long time coming — see http://www.rants.org/2008/03/06/thread_theory/ for more. And no, I'm not too
dignified to refer to my own blog post.

60

https://groups.google.com/
http://www.discourse.org/
http://www.discourse.org/
http://www.rants.org/2008/03/06/thread_theory/

Technical Infrastructure

users {_AT_} scanley.org:

Discussion about using Scanley or programming with the Scanley API,
suggestions of possible improvements, etc. You can browse the users@
archives at <<<link to archive>>> or subscribe here: <<<link to sub-
scribe>>>.

dev {_AT_} scanley.org:

Discussion about developing Scanley. Maintainers and contributors are
subscribed to this list. You can browse the dev@ archives at <<<link to
archive>>> or subscribe here: <<<link to subscribe>>>.

(Sometimes threads cross over between users@ and dev@, and Scanley's
developers will often participate in discussions on both lists. In general if
you're unsure where a question or post should go, start it out on users@.
If it should be a development discussion, someone will suggest moving it
over to dev@.)

announcements {_AT_} scanley.org:

This is a low-traffic, subscribe-only list. The Scanley developers post an-
nouncements of new releases and occasional other news items of interest to
the entire Scanley community here, but followup discussion takes place on
users@ or dev@. <<<link to subscribe>>>.

notifications {_AT_} scanley.org:

All code commit messages, bug tracker tickets, automated build/integra-
tion failures, etc, are sent to this list. Most developers should subscribe:
<<<link to subscribe>>>.

There is also a non-public list you may need to send to, although only de-
velopers are subscribed:

security {_AT_} scanley.org:

Where the Scanley project receives confidential reports of security vulner-
abilities. Of course, the report will be made public eventually, but only af-
ter a fix is released; see our security procedures page for more [...]

61

Technical Infrastructure

Choosing the Right Forum Management Soft-
ware

It's worth investing some time in choosing the right mailing list management system for your
project. Modern list management tools (some of which are listed later in the section called
“Mailing List / Message Forum Software” [71]) offer at least the following features:

Both email- and web-based access

Users should be able to subscribe to the forums by email, and read them on the web
(where they are organized into conversations or "threads", just as they would be in a
mailreader).

Moderation features

To "moderate" is to check posts, especially first-time posts, to make sure they are not
spam before they go out to the entire list. Moderation necessarily involves human ad-
ministrators, but software can do a great deal to make it easier on the moderators. There
is more said about moderation in the section called “Spam Prevention” [63] later in
this chapter.

Rich administrative interface

There are many things administrators need to do besides spam moderation — for exam-
ple, removing obsolete addresses, a task that can become urgent when a recipient's ad-
dress starts sending "I am no longer at this address" bounces back to the list in response
to every list post (though some systems can even detect this and unsubscribe the person
automatically). If your forum software doesn't have decent administrative capabilities,
you will quickly realize it, and should consider switching to software that does.

Header manipulation

Some people have sophisticated filtering and replying rules set up in their mail readers,
and rely on the forum adding or manipulating certain standard headers. See the section
called “Identification and Header Management” [65] later in this chapter for more
on this.

Archiving

All posts to the managed lists are stored and made available on the web (see the section
called “Conspicuous Use of Archives” [187] for more on the importance of public
archives). Usually the archiver is a native part of the message forum system; occasional-
ly, it is a separate tool that needs to be integrated.

62

Technical Infrastructure

The point of the above list is really just to show that forum management is a complex prob-
lem that has already been given a lot of thought, and to some degree been solved. You don't
need to become an expert, but you will have to learn at least a little bit about it, and you
should expect list management to occupy your attention from time to time in the course of
running any free software project. Below we'll examine a few of the most common issues.

Spam Prevention

A mailing list that takes no spam prevention measures at all will quickly be submerged in
junk emails, to the point of unusability. Spam prevention is mandatory. It is really two dis-
tinct functions: preventing spam posts from appearing on your mailing lists, and preventing
your mailing list from being a source of new email addresses for spammers' harvesters.

Filtering posts

There are three basic techniques for preventing spam posts, and most mailing list software
offers all three. They are best used in tandem:

1. Only auto-allow postings from list subscribers.

This is effective as far as it goes, and also involves very little administrative overhead,
since it's usually just a matter of changing a setting in the mailing list software's config-
uration. But note that posts which aren't automatically approved must not be simply dis-
carded. Instead, they should go into a moderation queue, for two reasons. First, you want
to allow non-subscribers to post: a person with a question or suggestion should not need
to subscribe to a mailing list just to ask a question there. Second, even subscribers may
sometimes post from an address other than the one by which they're subscribed. Email ad-
dresses are not a reliable method of identifying people, and shouldn't be treated as such.

2. Filter posts through spam-detection software.

If the mailing list software makes it possible (most do), you can have posts filtered by
spam-filtering software. Automatic spam-filtering is not perfect, and never will be, since
there is a never-ending arms race between spammers and filter writers. However, it can
greatly reduce the amount of spam that makes it through to the moderation queue. Since
the longer that queue is the more time humans must spend examining it, any amount of
automated filtering is beneficial.

There is not space here for detailed instructions on setting up spam filters. You will have
to consult your mailing list software's documentation for that (see the section called
“Mailing List / Message Forum Software” [71]). List software often comes with some
built-in spam prevention features, but you may want to add some third-party filters. I've
had good experiences with SpamAssassin (https://spamassassin.apache.org/). That is not a

63

https://spamassassin.apache.org/

Technical Infrastructure

comment on the many other open source spam filters out there, some of which are appar-
ently also quite good; I just happen to have used SpamAssassin myself and been satisfied
with it.

3. Moderation.

For mails that aren't automatically allowed by virtue of being from a list subscriber, and
which make it through the spam filtering software, if any, the last stage is moderation: the
mail is routed to a special holding area, where a human examines it and confirms or re-
jects it.

Confirming a post usually takes one of two forms: you can accept the sender's post just
this once, or you can tell the system to allow this and all future posts from the same
sender. You almost always want to do the latter, in order to reduce the future moderation
burden — after all, someone who has made a valid post to a forum is unlikely to suddenly
turn into a spammer later.

Rejecting is done by either marking the item to be discarded, or by explicitly telling the
system the message was spam so the system can improve its ability to recognize future
spams. Sometimes you also have the option to automatically discard future mails from the
same sender without them ever being held in the moderation queue, but there is rarely any
point doing this, since spammers don't send from the same address twice anyway.

Oddly, most message-forum systems have not yet given the moderation queue adminis-
trative interface the attention it deserves, considering how common the task is, so mod-
eration often still requires more clicks and UI gestures than it should. I hope this situa-
tion will improve in the future. In the meantime, perhaps knowing you're not alone in your
frustration will temper your disappointment somewhat.

Use the Moderation Channel Only for Moderation

Be sure to use moderation only for filtering out spams, and perhaps for clearly off-top-
ic messages such as when someone accidentally posts to the wrong mailing list. Al-
though the moderation system may give you a way to respond directly to the sender,
you should never use that method to answer questions that really belong on the mail-
ing list itself, even if you know the answer off the top of your head. To do so would
deprive the project's community of an accurate picture of what sorts of questions peo-
ple are asking, and deprive people of a chance to answer questions themselves and/
or see answers from others. (This is really just a special case of the advice in the sec-
tion called “Avoid Private Discussions” [37].) Mailing list moderation is strictly about
keeping the list free of spam and of wildly off-topic or otherwise inappropriate emails,
nothing more.

64

Technical Infrastructure

Identification and Header Management

When interacting with the forum by email, subscribers often want to filter mails from the list
into custom inboxes. Their mail reading software can do this automatically by examining the
mail's headers. The headers are the fields at the top of the mail that indicate the sender, re-
cipient, subject, date, and various other things about the message. Certain headers are well
known and are effectively mandatory:

From: ...
To: ...
Subject: ...
Date: ...

Others are optional, though still quite standard. For example, emails are not strictly required
to have the

Reply-to: sender@email.address.here

header, but most do, because it gives recipients a foolproof way to reach the author (it is
especially useful when the author had to send from an address other than the one to which
replies should be directed).

Some mail reading software offers an easy-to-use interface for filing mails based on patterns
in the Subject header. This leads people to request that the mailing list add an automatic pre-
fix to all Subjects, so they can set their readers to look for that prefix and automatically file
the mails in the right folder. The idea is that the original author would write:

Subject: Making the 2.5 release.

but the mail would show up on the list looking like this:

Subject: [Scanley Discuss] Making the 2.5 release.

Although most list management software offers the option to do this, you may decide against
turning the option on. The problem it solves can often be solved in less obtrusive ways (see
below), and there is a cost to eating space in the Subject field. Experienced mailing list users
typically scan the Subjects of the day's incoming list mail to decide what to read and/or re-
spond to. Prepending the list's name to the Subject can push the right side of the Subject off

65

Technical Infrastructure

the screen, rendering it invisible. This obscures information that people depend on to decide
what mails to open, thus reducing the overall functionality of the mailing list for everyone.

Instead of munging the Subject header, people could take advantage of the other standard
headers, starting with the To header, which should say the mailing list's address:

To: <discuss@lists.example.org>

Any mail reader that can filter on Subject should be able to filter on To just as easily.

There are a few other optional-but-standard headers expected for mailing lists; they are
sometimes not displayed by most mailreader software, but they are present nonetheless. Fil-
tering on them is even more reliable than using the "To" or "Cc" headers, and since these
headers are added to each post by the mailing list management software itself, some users
may be counting on their presence:

List-Help: <mailto:discuss-help@lists.example.org>
List-Unsubscribe: <mailto:discuss-unsubscribe@lists.example.org>
List-Post: <mailto:discuss@lists.example.org>
List-Id: <discuss.lists.example.org>
Delivered-To: mailing list discuss@lists.example.org
Mailing-List: contact discuss-help@lists.example.org; run by ezmlm

For the most part, they are self-explanatory. See http://www.nisto.com/listspec/list-manag-
er-intro.html for more explanation, or if you need the really detailed, formal specification,
see http://www.faqs.org/rfcs/rfc2369.html.

Having said all that, these days I find that most subscribers just request that the Subject head-
er include a list-identifying prefix. That's increasingly how people are accustomed to filtering
email: Subject-based filtering is what many of the major online email services (like Gmail)
offer users by default, and those services tend not to make it easy to see the presence of less-
commonly used headers like the ones I mentioned above — thus making it less likely that
people would even realize that they even have the option of filtering on those other headers.

Therefore, reluctantly, I recommend using a Subject prefix (keep it as short as you can) when
that's what your community wants. But if your project highly technical and most of its par-
ticipants are comfortable filtering on other headers, then do that and leave the Subject line
undisturbed.

Some mailing list software offers an option to append unsubscription instructions to the bot-
tom of every post. If that option is available, turn it on. It causes only a couple of extra lines

66

http://www.nisto.com/listspec/list-manager-intro.html
http://www.nisto.com/listspec/list-manager-intro.html
http://www.faqs.org/rfcs/rfc2369.html

Technical Infrastructure

per message, in a harmless location, and it can save you a lot of time, by cutting down on the
number of people who mail you — or worse, mail the list! — asking how to unsubscribe.

The Great Reply-to Debate

Earlier, in the section called “Avoid Private Discussions” [37], I stressed the importance of
making sure discussions stay in public forums, and talked about how active measures are
sometimes needed to prevent conversations from trailing off into private email threads; fur-
thermore, this chapter is all about setting up project communications software to do as much
of the work for people as possible. Therefore, if the mailing list management software offers
a way to automatically cause discussions to stay on the list, you would think turning on that
feature would be the obvious choice.

Well, not quite. There is such a feature, but it has some pretty severe disadvantages. The
question of whether or not to use it is one of the hottest debates in mailing list managemen-
t — admittedly, not a controversy that's likely to make the evening news in your city, but it
can flare up from time to time in free software projects. Below, I will describe the feature,
give the major arguments on both sides, and make the best recommendation I can.

The feature itself is very simple: the mailing list software can, if you wish, automatically set
the Reply-to header on every post to redirect replies to the mailing list. That is, no matter
what the original sender puts in the Reply-to header (or even if they don't include one at all),
by the time the list subscribers see the post, the header will contain the list address:

Reply-to: discuss@lists.example.org

On its face, this seems like a good thing. Because virtually all mail reading software pays at-
tention to the Reply-to header, now when anyone responds to a post, their response will be
automatically addressed to the entire list, not just to the sender of the message being respond-
ed to. Of course, the responder can still manually change where the message goes, but the
important thing is that by default replies are directed to the list. It's a perfect example of us-
ing technology to encourage collaboration.

Unfortunately, there are some disadvantages. The first is known as the Can't Find My Way
Back Home problem: sometimes the original sender will put their "real" email address in the
Reply-to field, because for one reason or another they send email from a different address
than where they receive it. People who always read and send from the same location don't
have this problem, and may be surprised that it even exists. But for those who have unusual
email configurations, or who cannot control how the From address on their mails looks (per-
haps because they send from work and do not have any influence over the IT department),
using Reply-to may be the only way they have to ensure that responses reach them. When
such a person posts to a mailing list that she's not subscribed to, her setting of Reply-to be-

67

Technical Infrastructure

comes essential information. If the list software overwrites it,10 she may never see the re-
sponses to her post.

The second disadvantage has to do with expectations, and in my opinion is the most power-
ful argument against Reply-to munging. Most experienced mail users are accustomed to two
basic methods of replying: reply-to-all and reply-to-author. All modern mail reading soft-
ware has separate keys for these two actions. Users know that to reply to everyone (that is,
including the list), they should choose reply-to-all, and to reply privately to the author, they
should choose reply-to-author. Although you want to encourage people to reply to the list
whenever possible, there are certainly circumstances where a private reply is the responder's
prerogative — for example, they may want to say something confidential to the author of the
original message, something that would be inappropriate on the public list.

Now consider what happens when the list has overridden the original sender's Reply-to. The
responder hits the reply-to-author key, expecting to send a private message back to the orig-
inal author. Because that's the expected behavior, he may not bother to look carefully at the
recipient address in the new message. He composes his private, confidential message, one
which perhaps says embarrassing things about someone on the list, and hits the send key.
Unexpectedly, a few minutes later his message appears on the mailing list! True, in theory
he should have looked carefully at the recipient field, and should not have assumed anything
about the Reply-to header. But authors almost always set Reply-to to their own personal ad-
dress (or rather, their mail software sets it for them), and many longtime email users have
come to expect that. In fact, when a person deliberately sets Reply-to to some other address,
such as the list, she usually makes a point of mentioning this in the body of her message, so
people won't be surprised at what happens when they reply.

Because of the possibly severe consequences of this unexpected behavior, my own prefer-
ence is to configure list management software to never touch the Reply-to header. This is one
instance where using technology to encourage collaboration has, it seems to me, potentially
dangerous side-effects. However, there are also some powerful arguments on the other side
of this debate. Whichever way you choose, you will occasionally get people posting to your
list asking why you didn't choose the other way. Since this is not something you ever want as
the main topic of discussion on your list, it might be good to have a canned response ready,
of the sort that's more likely to stop discussion than encourage it. Make sure you do not in-
sist that your decision, whichever it is, is obviously the only right and sensible one (even if
you think that's the case). Instead, point out that this is a very old debate, there are good ar-
guments on both sides, no choice is going to satisfy all users, and therefore you just made
the best decision you could. Politely ask that the subject not be revisited unless someone has
something genuinely new to say, then stay out of the thread and hope it dies a natural death.
(See also the section called “Avoid Holy Wars” [178].)

10In theory, the list software could add the list's address to whatever Reply-to destination were already present, if any, in-
stead of overwriting. In practice, for reasons I don't know, most list software overwrites instead of appending.

68

Technical Infrastructure

Someone may suggest a vote to choose one way or the other. You can do that if you want,
but I personally do not feel that counting heads is a satisfactory solution in this case. The
penalty for someone who is surprised by the behavior is so huge (accidentally sending a pri-
vate mail to a public list), and the inconvenience for everyone else is fairly slight (occasion-
ally having to remind someone to respond to the whole list instead of just to you), that it's not
clear that a majority should be able to put a minority at such risk.

I have not addressed all aspects of this issue here, just the ones that seemed most important.
For a full discussion, see these two canonical documents, which are the ones people always
cite when they're having this debate:

• Leave Reply-to alone, by Chip Rosenthal

https://unicom.crosenthal.com/pw/reply-to-harmful.html

• Set Reply-to to list, by Simon Hill

https://web.archive.org/web/20090223102606/http://www.metasystema.net/essays/re-
ply-to.mhtml

Despite the mild preference indicated above, I do not feel there is a "right" answer to this
question,11 and happily participate in many lists that do set Reply-to. The most important
thing you can do is settle on one way or the other early, and try not to get entangled in de-
bates about it after that. When the debate re-arises every few years, as it inevitably will, you
can point people to the archived discussion from last time.

11Although there is, of course, a right answer, and it is to leave the original author's Reply-to untouched. The relevant
standards document, http://www.ietf.org/rfc/rfc2822.txt, says "When the 'Reply-To:' field is present, it indicates the
mailbox(es) to which the author of the message suggests that replies be sent."

69

https://unicom.crosenthal.com/pw/reply-to-harmful.html
https://web.archive.org/web/20090223102606/http://www.metasystema.net/essays/reply-to.mhtml
https://web.archive.org/web/20090223102606/http://www.metasystema.net/essays/reply-to.mhtml
http://www.ietf.org/rfc/rfc2822.txt

Technical Infrastructure

Two Fantasies

Someday, someone will get the bright idea to implement a reply-to-list key in a mail
reader. It would use some of the custom list headers mentioned earlier to figure out the
address of the mailing list, and then address the reply directly to the list only, leaving
off any other recipient addresses, since most are probably subscribed to the list any-
way. Eventually, other mail readers will pick up the feature, and this whole debate will
go away.

(Actually, the Mutt (http://www.mutt.org/) mail reader does offer this feature. Then
shortly after the first edition of this book appeared, Michael Bernstein wrote me to
say: "There are other email clients that implement a reply-to-list function besides
Mutt. For example, Evolution has this function as a keyboard shortcut, but not a button
(Ctrl+L).")

An even better solution would be for Reply-to munging to be a per-subscriber pref-
erence in the list management software. Those who want the list to set Reply-to
munged — either on posts they receive or posts they send — could ask for that, and
those who don't would ask for Reply-to to be left alone. However, I don't know of any
currently-maintained software that offers this on a per-subscriber basis.

Archiving

Every discussion forum should be fully archived. It's common for new discussions to refer
to old ones, and often people doing an Internet search will find a solution to a problem by
stumbling across a message that had been casually posted to a mailing list by some stranger.
Archives also provide history and context for new users and developers who are becoming
more involved in the project.

The technical details of setting up archiving are specific to the software that's running the fo-
rum, and are beyond the scope of this book. If you need to choose or configure an archiver,
consider these properties:

Prompt updating

People will often want to refer to an archived message that was posted recently. If possi-
ble, the archiver should archive each post instantaneously, so that by the time a post ap-
pears on the mailing list, it's already present in the archives. If that option isn't available,
then at least try to set the archiver to update itself every hour or so. (By default, some
archivers run their update processes once per night, but in practice that's far too much
lag time for an active mailing list.)

70

http://www.mutt.org/

Technical Infrastructure

Referential stability

Once a message is archived at a particular URL, it should remain accessible at that ex-
act same URL forever. Even if the archives are rebuilt, restored from backup, or oth-
erwise fixed, any URLs that have already been made publicly available should remain
the same. Stable references make it possible for Internet search engines to index the
archives, which is a major boon to users looking for answers. Stable references are al-
so important because mailing list posts and threads are often linked to from other places,
such as from the bug tracker (see the section called “Bug Tracker” [87]) or from
other project documents.

Ideally, mailing list software would include a message's archive URL, or at least the
message-specific portion of the URL, in a header or footer when it distributes the mes-
sage to recipients. That way people who have a copy of the message would be able to
instantly know its archive location without having to actually visit the archives, which
would be helpful because any operation that involves web browsing is automatically
time-consuming. Whether any mailing list software actually offers this feature, I don't
know; unfortunately, the ones I have used do not. However, it's something to look for
(or, if you write mailing list software, it's a feature to consider implementing, please).

Thread support

It should be possible to go from any individual message to the thread (group of relat-
ed messages) that the original message is part of. Each thread should have its own URL
too, separate from the URLs of the individual messages in the thread.

Searchability

An archiver that doesn't support searching — on the bodies of messages, as well as on
authors and subjects — is close to useless. Note that some archivers support searching
by simply farming the work out to an external search engine such as Google. This is
acceptable, but direct search support is usually more fine-tuned, because it allows the
searcher to specify that the match must appear in a subject line versus the body, for ex-
ample.

The above is just a technical checklist to help you evaluate and set up an archiver. Getting
people to actually use the archiver to the project's advantage is discussed in later chapters, in
particular the section called “Conspicuous Use of Archives” [187].

Mailing List / Message Forum Software

Here are some tools for running message forums. If the site where you're hosting your
project already has a default setup, then you can just use that and avoid having to choose. But

71

Technical Infrastructure

if you need to install one yourself, below are some possibilities. (Of course, there are proba-
bly other tools out there that I just didn't happen to find, so don't take this as a complete list).

• Discourse — https://discourse.org/

Discourse was built to be the One True Discussion System for Web and mobile, and so far
it seems to be living up to its promise. It is open source, supports both browser-based and
email-based participation in discussions, and is under active development with commercial
support available. You can purchase hosted discourse if you don't want to set up yourself.

• Sympa — https://www.sympa.org/

Sympa is developed and maintained by a consortium of French universities. It is designed
for a given instance to handle both very large lists (> 1,000,000 members) and a large
number of lists. Sympa can work with a variety of dependencies; for example, you can run
it with sendmail, postfix, qmail or exim as the underlying message transfer agent. It has
built-in Web-based archiving.

• Mailman — http://www.list.org/

For many years, Mailman was the standard for open source project mailing lists. It comes
with a built-in archiver and has hooks for plugging in external archivers. Mailman is very
reliable in terms of message delivery and other under-the-hood functionality, but its rep-
utation suffered for a while because of various user interface issues in its aging 2.x code
base (especially for spam moderation and subscription moderation), and delays in shipping
its long-awaited 3.0 release.

However, Mailman 3.0 has now shipped, and is worth a look. It should solve many of the
problems of Mailman 2, and may make Mailman a reasonable choice again. This excellent
article by Sumana Harihareswara describes the major improvements: https://lwn.net/Arti-
cles/638090/.

• Google Groups — https://groups.google.com/

Listing Google Groups here was a tough call. The service is not itself open source, and a
few of its administrative functions can be a bit hard to use. However, its advantages are
substantial: your group's archives are always online and searchable; you don't have to
worry about scalability, backups, or other run-time infrastructure issues; the moderation
and spam-prevention features are pretty good (with the latter constantly being improved,
which is important in the neverending spam arms race); and Google Groups are easily ac-
cessible via both email and web, in ways that are likely to be already familiar to many par-
ticipants. These are strong advantages. If you just want to get your project started, and
don't want to spend too much time thinking about what message forum software or service
to use, Google Groups is a good default choice.

72

https://discourse.org/
https://www.sympa.org/
http://www.list.org/
https://lwn.net/Articles/638090/
https://lwn.net/Articles/638090/
https://groups.google.com/

Technical Infrastructure

Version Control
A version control system (or revision control system) is a combination of technologies and
practices for tracking and controlling changes to a project's files, in particular to source code,
documentation, and web pages. If you have never used version control before, the first thing
you should do is go find someone who has, and get them to join your project. These days,
everyone will expect at least your project's source code to be under version control, and
probably will not take the project seriously if it doesn't use version control with at least mini-
mal competence.

The reason version control is so universal is that it helps with virtually every aspect of run-
ning a project: inter-developer communications, release management, bug management, code
stability and experimental development efforts, and attribution and authorization of changes
by particular developers. The version control system provides a central coordinating force
across all of these areas. The core of version control is change management: identifying each
discrete change made to the project's files, annotating each change with metadata like the
change's date and author, and then replaying these facts to whoever asks, in whatever way
they ask. It is a communications mechanism where a change is the basic unit of information.

This section does not discuss all aspects of using a version control system. It's so all-encom-
passing that it must be addressed topically throughout the book. Here, we will concentrate on
choosing and setting up a version control system in a way that will foster cooperative devel-
opment down the road.

Version Control Vocabulary

This book cannot teach you how to use version control if you've never used it before, but it
would be impossible to discuss the subject without a few key terms. These terms are useful
independently of any particular version control system: they are the basic nouns and verbs of
networked collaboration, and will be used generically throughout the rest of this book. Even
if there were no version control systems in the world, the problem of change management
would remain, and these words give us a language for talking about that problem concisely.

If you're comfortably experienced with version control already, you can probably skip this
section. If you're not sure, then read through this section at least once. Certain version control
terms have gradually changed in meaning since the early 2000s, and you may occasionally
find people using them in incompatible ways in the same conversation. Being able to detect
that phenomenon early in a discussion can often be helpful.

73

Technical Infrastructure

"Version" Versus "Revision"

The word version is sometimes used as a synonym for "revision", but I will not use it
that way in this book, because it is too easily confused with "version" in the sense of a
version of a piece of software — that is, the release or edition number, as in "Version
1.0". However, since the phrase "version control" is already standard, I will continue
to use it as a synonym for "revision control" and "change control". Sorry. One of open
source's most endearing characteristics is that it has two words for everything, and one
word for every two things.

commit

To make a change to the project. More formally: to store a change in the version con-
trol database in such a way that it can be incorporated into future releases of the project.
"Commit" can be used as a verb or a noun. For example: "I just committed a fix for the
server crash bug people have been reporting on Mac OS X. Jay, could you please review
the commit and check that I'm not misusing the allocator there?"

push

To publish a commit to a publicly online repository, from which others can incorporate
it into their copy of the project's code. When one says one has pushed a commit, the des-
tination repository is usually implied. Usually it is the project's authoritative repository,
the one from which public releases are made.

Note that in some older version control systems (e.g., Subversion), commits are auto-
matically and unavoidably pushed up to a predetermined central repository, while in
most newer systems (e.g., Git, Mercurial) the developer chooses when and where to
push commits. Because the former privileges a particular central repository, they are
known as "centralized" version control systems, while the latter are known as "decen-
tralized". In general, decentralized systems are the modern trend,12 especially for open
source projects, which benefit from the peer-to-peer relationship between developers'
repositories.

pull

(or "update" or sometimes "fetch")

12Decentralized version control has actually been around for a long time, but only relatively recently did it become the
most popular form of version control. It is now the assumed default, especially for open source — in both senses: that is,
the version control systems are themselves open source, and are intended to be suitable for managing open source soft-
ware projects.

74

Technical Infrastructure

To pull others' changes (commits) into your copy of the project. When pulling changes
from a project's mainline development branch (see branch [77]), people often say
"update" instead of "pull", for example: "Hey, I noticed the indexing code is always
dropping the last byte. Is this a new bug?" "Yes, but it was fixed last week — try updat-
ing and it should go away."

Note that in Git, "pull" and "fetch" are somewhat different. To fetch means to obtain
the latest changes from a remote repository (e.g., from the authoritative upstream repos-
itory) and store them at the ready in your local repository, but without merging them lo-
cally — in essence, it means "synchronize my local copy of the remote repository with
the remote repository". To pull means to fetch and then automatically merge the re-
ceived changes locally (setting conflict markers if there are conflicts). Opinions differ
on whether it is better to fetch and then manually merge, or to just pull every time; it de-
pends both on your personal development style and on how the project as a whole man-
ages changes.

Despite this difference, even in Git-based projects developers may colloquially say
"fetch" to refer to obtaining changes, without meaning fetch specifically as opposed to
pull.

See also the section called “Pull Requests / Merge Requests” [84].

commit message or log message

A bit of commentary attached to each commit, describing the nature and purpose of
the commit (both terms are used about equally often; I'll use them interchangeably in
this book). Log messages are among the most important documents in any project: they
are the bridge between the detailed, highly technical meaning of each individual code
changes and the more user-visible world of bugfixes, features and project progress. Lat-
er in this section, we'll look at ways to distribute them to the appropriate audiences; also,
the section called “Codifying Tradition” [190] discusses ways to encourage contribu-
tors to write concise and useful commit messages.

repository

A database in which changes are stored and from which they are published. In central-
ized version control systems, there is a single, authoritative repository on a remote serv-
er; that repository records all changes to the project, and each developer works with a
snapshot of the latest version on her own machine. In decentralized systems, each de-
veloper has her own repository, changes can be swapped back and forth between repos-
itories arbitrarily, and the question of which repository is authoritative (that is, the one
from which public releases are rolled) is defined purely by social convention, instead of
by a combination of social convention and technical enforcement.

75

Technical Infrastructure

clone (see also checkout [76])

To obtain one's own development repository by making a copy of the project's central
repository.

checkout

When used in discussion, "checkout" usually means something like "clone", except
that centralized systems don't really clone the full repository, they just obtain a working
copy or working files [76]. When decentralized systems use the word "checkout",
they also mean the process of obtaining working files from a repository, but since the
repository is local in that case, the user experience is quite different because the network
is not involved.

In the centralized sense, a checkout produces a directory tree called a "working
copy" (see below), from which changes may be sent back to the original repository.

working copy or working files

A developer's private directory tree containing the project's source code files, and possi-
bly its web pages or other documents, in a form that allows the developer to edit them.
A working copy also contains some version control metadata saying what repository it
comes from, what branch it represents, and a few other things. Typically, each developer
has her own working copy, from which she edits, tests, commits, pulls, pushes, etc.

In decentralized systems, working copies and repositories are usually colocated anyway,
so the term "working copy" is less often used. Developers instead tend to say "my clone"
or "my copy" or sometimes "my fork".

revision, change, changeset, or (again) commit

A "revision" is a precisely specified incarnation of the project at a point in time, or of a
particular file or directory in the project at that time. These days, most systems also use
"revision", "change", "changeset", or "commit" to refer to a set of changes committed to-
gether as one conceptual unit, if multiple files were involved, though colloquially most
people would refer to changeset 12's effect on file F as "revision 12 of F".

These terms occasionally have distinct technical meanings in different version control
systems, but the general idea is always the same: they give a way to speak precisely
about exact points in time in the history of a file or a set of files (say, immediately be-
fore and after a bug is fixed). For example: "Oh yes, she fixed that in revision 10" or
"She fixed that in commit fa458b1fac".

When one talks about a file or collection of files without specifying a particular revision,
it is generally assumed that one means the most recent revision(s) available.

76

Technical Infrastructure

diff

A textual representation of a change. A diff shows which lines were changed and how,
plus a few lines of surrounding context on either side. A developer who is already fa-
miliar with some code can usually read a diff against that code and understand what the
change did, and often even spot bugs.

tag or snapshot

A label for a particular state of the project at a point in time. Tags are generally used to
mark interesting snapshots of the project. For example, a tag is usually made for each
public release, so that one can obtain, directly from the version control system, the ex-
act set of files/revisions comprising that release. Tag names are often things like Re-
lease_2_0, Delivery_20211009, etc.

branch

A copy of the project, under version control but isolated so that changes made to the
branch don't affect other branches of the project, and vice versa, except when changes
are deliberately "merged" from one branch to another (see below). Branches are also
known as "lines of development". Even when a project has no explicit branches, de-
velopment is still considered to be happening on the "main branch", also known as the
"main line" or "trunk" or sometimes "master".

Branches are a way to keep different lines of development from interfering with each
other. For example, a short-term branch is typically used for a bugfix or a minor en-
hancement. Longer-term branches can also be used for experimental development that
would be too destabilizing for the main line.

Conversely, a branch can also be used as a safely isolated place in which to stabilize a
new release. During the release process, regular development — that is, frequent inte-
gration of development branches — would continue uninterrupted in the main branch;
meanwhile, on the release branch, no changes are allowed except those approved by the
release managers. This way, making a release needn't interfere with ongoing develop-
ment work. See the section called “Use Branches to Avoid Bottlenecks” [80] for a
more detailed discussion of branching.

merge or port

To move a change from one branch to another. This includes merging from the main
branch to some other branch, or vice versa. In fact, those are the most common kinds of
merges; it is less common to port a change between two non-main branches. See the sec-
tion called “Singularity of Information” [81] for more on change porting.

77

Technical Infrastructure

"Merge" has a second, related meaning: it is what some version control systems do when
they see that two people have changed the same file but in non-overlapping ways. Since
the two changes do not interfere with each other, when one of the people updates their
copy of the file (already containing their own uncommitted changes), the other person's
changes will be automatically merged in. This is very common, especially on projects
where multiple people are hacking on the same code. When two different changes do
overlap, the result is a "conflict"; see below.

conflict

What happens when two people try to make different changes to the same place in the
code. All version control systems automatically detect conflicts, and notify at least one
of the humans involved that their changes conflict with someone else's. It is then up to
that human to resolve the conflict, and to communicate that resolution to the version
control system.

revert or reversion

To undo an already-committed change to the software. The undoing itself is a versioned
event, and is usually done by asking the version control system to reverse the change(s)
in questions, rather than by manually making the edits and committing them.

lock

A way to declare an exclusive intent to change a particular file or directory. For exam-
ple, "I can't commit any changes to the web pages right now. It seems Alfred has them
all locked while he fixes their background images." Not all version control systems even
offer the ability to lock, and of those that do, not all require the locking feature to be
used. This is because parallel, simultaneous development is the norm, and locking peo-
ple out of files is (usually) contrary to this ideal.

Version control systems that require locking to make commits are said to use the lock-
modify-unlock model. Those that do not are said to use the copy-modify-merge model.
An excellent in-depth explanation and comparison of the two models may be found at
https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.ba-
sic.vsn-models. In general, the copy-modify-merge model is better for open source de-
velopment, and all the version control systems discussed in this book support that mod-
el.

Choosing a Version Control System
If you don't already have an opinion about which version control system your project should
use, then choose Git (https://git-scm.com/), and host your project's repositories at GitHub
(https://github.com/), which offers unlimited free hosting for open source projects.

78

https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
https://svnbook.red-bean.com/nightly/en/svn.basic.version-control-basics.html#svn.basic.vsn-models
https://git-scm.com/
https://github.com/

Technical Infrastructure

Git is by now the de facto standard in the open source world, as is hosting one's reposito-
ries at GitHub. Because so many developers are already comfortable with that combination,
choosing it sends the signal that your project is ready for participants. But Git-at-GitHub
is not the only viable combination. Many projects host their authoritative Git repository
somewhere else, either at another public hosting site (see the section called “Canned Host-
ing” [55]) or on their own server (perhaps using one of the open source forge systems
listed in the section called “Hosting on Fully Open Source Infrastructure” [57]). Some
projects use a different version control system entirely, such as Mercurial (https://www.mer-
curial-scm.org/).

There isn't space here for an in-depth exploration of why you might choose something oth-
er than Git. If you have a reason to do so, then you already know what that reason is. If you
don't, then just use Git (on either GitHub or GitLab). If you find yourself using something
other than Git or Mercurial, ask yourself why — because whatever that other version control
system is, most other developers won't be familiar with it, and it likely has a smaller commu-
nity of support around it than those two do.

Using the Version Control System
The recommendations in this section are not targeted toward a particular version control sys-
tem, and should be implementable in any of them. Consult your specific system's documen-
tation for details.

Version Everything

Keep not only your project's source code under version control, but also its web pages, docu-
mentation, FAQ, design notes, and anything else that people might want to edit. Keep them
right with the source code, in the same repository tree. Any piece of information worth writ-
ing down is worth versioning — that is, any piece of information that could change. Things
that don't change should be archived, not versioned. For example, an email, once posted,
does not change; therefore, versioning it wouldn't make sense (unless it becomes part of
some larger, evolving document).

The reason to version everything together in one place is so that people only have to learn
one mechanism for submitting changes. Often a contributor will start out making edits to the
web pages or documentation, and move to small code contributions later, for example. When
the project uses the same system for all kinds of submissions, people only have to learn the
ropes once. Versioning everything together also means that new features can be committed
together with their documentation updates, that branching the code will branch the documen-
tation too, etc.

Don't keep generated files under version control. They are not truly editable data, since they
are produced programmatically from other files. For example, some build systems create

79

https://www.mercurial-scm.org/
https://www.mercurial-scm.org/

Technical Infrastructure

a file named configure based on a template in configure.in. To make a change to
the configure, one would edit configure.in and then regenerate; thus, only the tem-
plate configure.in is an "editable file." Just version the templates — if you version the
generated files as well, people will inevitably forget to regenerate them when they commit a
change to a template, and the resulting inconsistencies will cause endless confusion.

There are technical exceptions to the rule that all editable data should be kept in the same
version control system as the code. For example, a project's bug tracker and its wiki hold
plenty of editable data, but usually do not store that data in the main version control sys-
tem.13 However, they should still have versioning systems of their own, e.g., the comment
history in a bug ticket, and the ability to browse past revisions and view differences between
them in a wiki.

Browsability

The project's repository should be browsable on the Web. This means not only the ability to
see the latest revisions of the project's files, but to go back in time and look at earlier revi-
sions, view the differences between revisions, read log messages for selected changes, etc.

Browsability is important because it is a lightweight portal to project data. If the repository
cannot be viewed through a web browser, then someone wanting to inspect a particular file
(say, to see if a certain bugfix had made it into the code) would first have to install version
control client software locally, which could turn their simple query from a two-minute task
into a half-hour or longer task.

Browsability also implies canonical URLs for viewing a particular change (i.e., a commit),
and for viewing the latest revision at any given time without specifying its commit identifier.
This can be very useful in technical discussions or when pointing people to documentation or
examples. If you tell someone a URL that always points to the latest revision of the a file, or
to a particular known revision, the communication is completely unambiguous, and avoids
the issue of whether the recipient has an up-to-date working copy of the code themselves.

Some version control systems come with built-in repository-browsing mechanisms, and in
any case all hosting sites offer it via their web interfaces. But if you need to install a third-
party tool to get repository browsing, do so; it's worth it.

Use Branches to Avoid Bottlenecks

Non-expert version control users are sometimes a bit afraid of branching and merging. If you
are among those people, resolve right now to conquer any fears you may have and take the

13Some development environments have tried to integrate everything into one unified, version-controlled world, e.g.,
https://fossil-scm.org/ and http://veracity-scm.com/, but so far none of them have gained widespread adoption in the
open source world.

80

https://fossil-scm.org/
http://veracity-scm.com/

Technical Infrastructure

time to learn how to do branching and merging. They are not difficult operations, once you
get used to them, and they become increasingly important as a project acquires more devel-
opers.

Branches are valuable because they turn a scarce resource — working room in the project's
code — into an abundant one. Normally, all developers work together in the same sandbox,
constructing the same castle. When someone wants to add a new drawbridge, but can't con-
vince everyone else that it would be an improvement, branching makes it possible for her to
copy the castle, take it off to an isolated corner, and try out the new drawbridge design. If the
effort succeeds, she can invite the other developers to examine the result (in GitHub-speak,
this invitation is known as a "pull request" — see the section called “Pull Requests / Merge
Requests” [84]). If everyone agrees that the result is good, she or someone else can tell
the version control system to move ("merge") the drawbridge from the branch version of the
castle over to the main version, usually called the main branch.

It's easy to see how this ability helps collaborative development. People need the freedom to
try new things without feeling like they're interfering with others' work. Equally importantly,
there are times when code needs to be isolated from the usual development churn, in order to
get a bug fixed or a release stabilized (see the section called “Stabilizing a Release” [215]
and the section called “Maintaining Multiple Release Lines” [229]) without worrying
about tracking a moving target. At the same time, people need to be able to review and com-
ment on experimental work, whether it's happening in the main branch or somewhere else.
Treating branches as first-class, publishable objects makes all this possible.

Use branches liberally, and encourage others to use them. But also make sure that a given
branch is only active for as long as needed. Every active branch is a slight drain on the com-
munity's attention. Even those who are not working in a branch still stumble across it occa-
sionally; it enters their peripheral awareness from time to time and draws some attention.
Sometimes such awareness is desirable, of course, and commit notices should be sent out for
branch commits just as for any other commit. But branches should not become a mechanism
for dividing the development community's efforts. With rare exceptions, the eventual goal
of most branches should be to merge their changes back into the main line and disappear, as
soon as possible.

Singularity of Information

Merging has an important corollary: never commit the same change twice. That is, a giv-
en change should enter the version control system exactly once. The revision (or set of revi-
sions) in which the change entered is its unique identifier from then on. If it needs to be ap-
plied to branches other than the one on which it entered, then it should be merged from its
original entry point to those other destinations — as opposed to committing a textually iden-
tical change, which would have the same effect in the code, but would make accurate book-
keeping and release management much harder.

81

Technical Infrastructure

The practical effects of this advice differ from one version control system to another. In
some systems, merges are special events, fundamentally distinct from commits, and carry
their own metadata with them. In others, the results of merges are committed the same way
other changes are committed, so the primary means of distinguishing a "merge commit" from
a "new change commit" is in the log message. In a merge's log message, don't repeat the log
message of the original change. Instead, just indicate that this is a merge, and give the iden-
tifying revision of the original change, with at most a one-sentence summary of its effect.
If someone wants to see the full log message, she should consult the original revision. Non-
duplication makes it easier to be sure when one has tracked down the original source of a
change: when you're looking at a complete log message that doesn't refer to a some other
merge source, you can know that it must be the original change, and treat it accordingly.

The same principle applies to reverting a change. If a change is withdrawn from the code,
then the log message for the reversion should merely state that some specific revision(s) is
being reverted, and explain why. It should not describe the semantic code change that results
from the reversion, since that can be derived by consulting the original log message and diff.
(And if you're using a system in which editing or annotating past log messages is possible,
go back and fix the original change's log message to mention the future reversion.)

All of the above implies that you should use a consistent syntax for referring to changes. This
is helpful not only in log messages, but in emails, the bug tracker, and elsewhere. In Git and
Mercurial, the syntax is usually "commit c39fcac089" (where the commit hash code on the
right is long enough to be unique in the relevant context). In Subversion, revision numbers
are linearly incremented integers and the standard syntax for, say, revision 1729 is "r1729" (a
syntax you'll see in some examples in this book). Other systems have their own standard
syntaxes for expressing the changeset name. Whatever the appropriate syntax is for your
system, encourage people to use it consistently when referring to changes. Consistent ex-
pression of change names makes project bookkeeping much easier (as we will see in Chap-
ter 6, Communications [164] and in Chapter 7, Packaging, Releasing, and Daily Devel-
opment [206]). Since a lot of this bookkeeping may be done by developers who must also
use some different bookkeeping method for internal projects at their company, it needs to be
as easy as possible.

See also the section called “Releases and Daily Development” [230].

Authorization

Even if your project's version control system or hosting site allows technical enforcement of
developer's activity areas — e.g., permitting them to push commits in some places but not
others — it's usually better to not to use it. Automated enforcement is rarely necessary, and
may even be harmful.

82

Technical Infrastructure

Instead, most projects use an honor system: when a person is granted commit access, even
for a sub-area of the project, what they actually receive is the physical ability to commit any-
where in the authoritative repository. They're just asked to keep their commits in their area.
(See the section called “Committers” [259] for how projects decide who can put changes
where.)

Remember that there is little real risk here: the repository provides an audit trail, and in an
active project, all commits are reviewed anyway. If someone commits where they're not sup-
posed to, others will notice it and say something. If a change needs to be undone, that's sim-
ple enough — everything's under version control anyway, so just revert.

There are several advantages to this more relaxed approach. First, as developers expand into
other areas (which they usually will if they stay with the project), there is no administrative
overhead to granting them wider privileges. Once the decision is made, the person can just
start committing in the new area right away.

Second, it allows such expansion to be done in a fine-grained manner. Generally, a commit-
ter in area X who wants to expand to area Y will start posting patches against Y and asking
for review. If someone who already has commit access to area Y sees such a patch and ap-
proves of it, she can just tell the submitter to commit the change directly (mentioning the ap-
prover's name in the log message, of course). That way, the commit will come from the per-
son who actually wrote the change, which is preferable from both an information manage-
ment standpoint and from a crediting standpoint.

Last, and perhaps most important, using the honor system encourages an atmosphere of trust
and mutual respect. Giving someone commit access to a subdomain is a statement about their
technical preparedness — it says: "We see you have expertise to make commits in a certain
domain, so go for it." But imposing strict authorization controls says: "Not only are we as-
serting a limit on your expertise, we're also a bit suspicious about your intentions." That's not
the sort of statement you want to make if you can avoid it. Bringing someone into the project
as a committer is an opportunity to initiate them into a circle of mutual trust. A good way to
do that is to give them more power than they're supposed to use, then inform them that it's up
to them to stay within agreed-on limits.

The Subversion project has operated on this honor system way for over two decades, with
more than 50 full committers and over 100 partial committers as of this writing. (Not all of
them are active at any given time, but that just reinforces the point I'm making here.) The on-
ly distinction the system enforces by technical means is the global distinction between com-
mitters and everyone else. All further subdivisions are maintained solely by human discre-
tion. Yet the project never had a serious problem with someone deliberately committing out-
side their domain. Once or twice there's been an innocent misunderstanding about the extent
of someone's commit privileges, but it's always been resolved quickly and amiably.

83

Technical Infrastructure

Obviously, in situations where self-policing is impractical, you must rely on hard authoriza-
tion controls. But such situations are rare. Even when there are millions of lines of code and
hundreds or thousands of developers, a commit to any given code module should still be re-
viewed by those who work on that module,14 and they can recognize if someone committed
there who wasn't supposed to. If regular commit review isn't happening, then the project has
bigger problems to deal with than the authorization system anyway.

In summary, don't spend too much time fiddling with technically-enforced authorization con-
trols unless you have a specific reason to. It usually won't bring much tangible benefit, and
there are advantages to relying on human controls instead.

None of this should be taken to mean that the socially-enforced restrictions themselves are
unimportant, of course. It would be bad for a project to encourage people to commit in ar-
eas where they're not qualified. Furthermore, in many projects, full (project-wide) com-
mit permission has a special corollary status: it implies voting rights on project-wide ques-
tions. This political aspect of commit areas is discussed more in the section called “Who
Votes?” [109].

Receiving and Reviewing Contributions
These days the primary means by which changes — code contributions, documentation
contributions, etc — reach a project is via "pull requests" (described in more detail below),
though some older projects still prefer to receive a patch posted to a mailing list or attached
in a bug tracker. Once a contribution arrives, it typically goes through a review-and-revise
process, involving communication between the contributor and various members of the
project. At some point during the process, if all goes well, the contribution is eventually
deemed ready for incorporation into the main codebase and is merged in. This does not mean
that discussion and work on the contribution cease at that point. The contribution may well
continue to be improved, it's just that that improvement now takes place within the project
rather than off to one side. The moment when a code change is merged to the project's main
branch is when it becomes officially part of the project. It is no longer the sole responsibility
of whoever submitted it; it is the collective responsibility of the project as a whole.

Pull Requests / Merge Requests

A pull request (also called a merge request) is a request from a contributor to the project for
a certain change to be "pulled" (i.e., merged) into the project — usually into the project's
main branch, though sometimes pull requests are targeted at some other branch.

The change is offered in the form of the difference between the contributor's copy (or
"clone") of the project and the project's own copy. The two copies share most of their change

14See the section called “Practice Conspicuous Code Review” [41].

84

Technical Infrastructure

history, of course, but at a certain point the contributor's diverges — it contains the change
the contributor has implemented and that the project does not have yet. The project may also
have moved on since the clone was made and contain new changes that the contributor does
not have, but these can be ignored for the purposes of discussion here. A pull request is di-
rectional: it is for sending changes the contributor has that the receiver does not, and is not
about changes flowing in the reverse direction.

In practice, the two copies are usually stored on the same hosting site, and the contributor
can initiate the pull request by simply clicking a button. Creating a pull request automatical-
ly creates a tracking ticket that everyone can see, so that a pending pull request can use the
same workflow as any other issue. Some projects also have contributions enter through a col-
laborative code review tool, such as https://en.wikipedia.org/wiki/Gerrit_%28software%29
or https://www.reviewboard.org/, and these days project hosting sites include code-review
features directly in their pull request management interface anyway.

Pull requests are so frequent a topic of discussion that you will often see people abbreviate
them as "PR", as in "Yeah, your proposed fix sounds good. Would you post a PR and assign
it to me for review please?" For newcomers, however, the term "pull request" is sometimes
confusing, however, because it sounds like it is a request by the contributor to pull a change
from someone else, when actually it is a request the contributor makes to the project to pull
the change from the contributor. Some systems (e.g., GitLab) use the term "merge request"
to mean the same thing. I actually find that term much more natural, but alas, "pull request",
as popularized by GitHub, appears to have won, and we all need to just get used to it. I'm not
bitter.

Commit Notifications / Commit Emails

Every commit to the repository — or every push containing a group of commits — should
generate a notification that goes out to a subscribable forum, such as an email sent to a mail-
ing list. The notification should show who made the change, when they made it, what files
and directories changed, and the actual content of the change.

The most common form of commit notifications is to just subscribe to the repository itself,
since the hosting platform will send out notifications — usually by email, sometimes also by
other means — for interesting activity. Each developer gets to customize what counts as in-
teresting for them. Alternatively, some projects have a mailing list dedicated to commit no-
tifications. Each commit (or push, or merge to the main branch) sends an automatic email to
that list. Note that this is a special mailing list devoted to commit emails, separate from mail-
ing lists to which humans post. Whatever forms of commit notification your project arranges,
each notification should make it easy for developers to proceed from there to reviewing that
commit or changeset (see the section called “Practice Conspicuous Code Review” [41]).

85

https://en.wikipedia.org/wiki/Gerrit_%28software%29
https://www.reviewboard.org/

Technical Infrastructure

Whether your project should use an email list — either in addition to or instead of or some
other kind of subscribable notifications — depends on the demographics of your develop-
ers, but when in doubt, email is usually a good default choice. The specifics of setting up no-
tifications vary depending on the version control system, but usually there's a script or oth-
er packaged facility for doing it. If you're having trouble finding it, try looking for docu-
mentation on hooks (or sometimes triggers), specifically a post-merge hook or post-commit
hook. These hooks are a general means of launching automated tasks in response to receiving
changes. The hook is fed all the information about the merge, and is then free to use that in-
formation to do anything — for example, to send out an email.

With pre-packaged commit email systems, you may want to modify some of the default be-
haviors:

1. Some commit mailers don't include the actual diffs in the email, but instead provide a
URL to view the change on the web using the repository browsing system. While it's good
to provide the URL, so the change can be referred to later, it is also important that commit
emails include the diffs themselves. Reading email is already part of people's routine, so
if the content of the change is visible right there in the commit email, developers will re-
view the commit on the spot, without leaving their mail reader. If they have to click on a
URL to review the change, most won't do it, because that requires a new action instead of
a continuation of what they were already doing. Furthermore, if the reviewer wants to ask
something about the change, it's vastly easier to hit reply-with-text and simply annotate
the quoted diff than it is to visit a web page and laboriously cut-and-paste parts of the diff
from web browser to email client.

Of course, if the diff is huge, such as when a large body of new code has been added to
the repository, then it makes sense to omit the diff and offer only the URL. Most commit
mailers can do this kind of size-limiting automatically. If yours can't, then it's still better
to include diffs, and live with the occasional huge email, than to leave the diffs off entire-
ly. Convenient reviewing and commenting is a cornerstone of cooperative development,
and much too important to do without.

2. The commit emails should set their Reply-to header to the regular development list, not
the commit email list. That is, when someone reviews a commit and writes a response,
their response should be automatically directed toward the human development list, where
technical issues are normally discussed.

There are a few reasons for this. First, you want to keep all technical discussion on one
list, because that's where people expect it to happen, and because that way there's only one
archive to search. Second, there might be interested parties not subscribed to the commit
email list. Third, the commit email list advertises itself as a service for watching commits,
not for watching commits and having occasional technical discussions. Those who sub-

86

Technical Infrastructure

scribed to the commit email list did not sign up for anything but commit emails; sending
them other material via that list would violate an implicit contract.

Note that this advice to set Reply-to does not contradict the recommendations in the sec-
tion called “The Great Reply-to Debate” [67]. It's always okay for the sender of a
message to set Reply-to. In this case, the sender is the version control system itself, and it
sets Reply-to in order to indicate that the appropriate place for replies is the development
mailing list, not the commit list.

Bug Tracker
Bug tracking is a broad topic, and various aspects of it are discussed throughout this book.
Here I'll concentrate mainly on the features your project should look for in a bug tracker, and
how to use them. But to get to those, we have to start with a policy question: exactly what
kind of information should be kept in a bug tracker anyway?

The term bug tracker is misleading. Bug tracking systems are used to track not only bug re-
ports, but new feature requests, one-time tasks, unsolicited patches — really anything that
has distinct beginning and end states, with optional transition states in between, and that ac-
crues information over its lifetime. For this reason, bug trackers are also called issue track-
ers, ticket trackers, defect trackers, artifact trackers, request trackers, etc.

In this book, I'll generally use the word ticket to refer the items in the tracker's database, be-
cause that distinguishes between the behavior that the user encountered or proposed — that
is, the bug or feature itself — and the tracker's ongoing record of that discovery, diagnosis,
discussion, and eventual resolution. But note that many projects use the word bug or issue to
refer to both the ticket itself and to the underlying behavior or goal that the ticket is tracking.
(Those usages are in fact more common than "ticket"; it's just that in this book we need to be
able to make this distinction explicitly in a way that projects themselves usually don't.)

The classic ticket life cycle looks like this:

1. Someone files the ticket. They provide a summary, an initial description (including a re-
production recipe, if applicable; see the section called “Treat Every User as a Potential
Participant” [245] for how to encourage good bug reports), and whatever other infor-
mation the tracker asks for. The person who files the ticket may be totally unknown to the
project — bug reports and feature requests are as likely to come from the user community
as from the developers.

Once filed, the ticket is in what's called an open state. Because no action has been taken
yet, some trackers also label it as unverified and/or unstarted. It is not assigned to anyone;
or, in some systems, it is assigned to a fake user to represent the lack of real assignation.

87

Technical Infrastructure

At this point, it is in a holding area: the ticket has been recorded, but not yet integrated in-
to the project's consciousness.

2. Others read the ticket, add comments to it, and perhaps ask the original filer for clarifica-
tion on some points.

3. The bug gets reproduced. This may be the most important moment in its life cycle. Al-
though the bug is not actually fixed yet, the fact that someone besides the original filer
was able to make it happen proves that it is genuine, and, no less importantly, confirms to
the original filer that they've contributed to the project by reporting a real bug. (This step
and some of the others don't apply to feature proposals, task tickets, etc, of course. But
most filings are for genuine bugs, so we'll focus on that here.)

4. The bug gets diagnosed: its cause is identified, and if possible, the effort required to fix
it is estimated. Make sure these things get recorded in the ticket; if the person who diag-
nosed the bug suddenly has to step away from it for a while, someone else should be able
to pick up where she left off.

In this stage, or sometimes in the previous one, a developer may "take ownership" of the
ticket and assign it to herself (the section called “Distinguish Clearly Between Inquiry and
Assignment” [236] examines the assignment process in more detail). The ticket's prior-
ity may also be set at this stage. For example, if it is so important that it should delay the
next release, that fact needs to be identified early, and the tracker should have some way
of noting it.

5. The ticket gets scheduled for resolution. Scheduling doesn't necessarily mean naming a
date by which it will be fixed. Sometimes it just means deciding which future release (not
necessarily the next one) the bug should be fixed by, or deciding that it need not block any
particular release. Scheduling may also be dispensed with if the bug is quick to fix.

6. The bug gets fixed (or the task completed, or the patch applied, or whatever). The change
or set of changes that fixed it should be discoverable from the ticket. After this, the ticket
is closed and/or marked as resolved.

There are some common variations on this life cycle. Often a ticket is closed very soon af-
ter being filed, because it turns out not to be a bug at all, but rather a misunderstanding on
the part of the user. As a project acquires more users, more and more such invalid tickets will
come in, and developers will close them with increasingly short-tempered responses. Try to
guard against the latter tendency. It does no one any good, as the individual user in each case
is not responsible for all the previous invalid tickets; the statistical trend is visible only from
the developers' point of view, not from the user's. (In the section called “Pre-Filtering the
Bug Tracker” [91] we'll look at techniques for reducing the number of invalid tickets.)
Also, if different users are experiencing the same misunderstanding over and over, it might

88

Technical Infrastructure

mean that some aspect of the software needs to be redesigned. This sort of pattern is easiest
to notice when there is a dedicated issue manager monitoring the bug database; see the sec-
tion called “Issue Manager” [254].

Another common life event for the ticket to be closed as a duplicate soon after Step 1. A du-
plicate is when someone reports something that's already known to the project. Duplicates
are not confined to open tickets: it's possible for a bug to come back after having been fixed
(this is known as a regression), in which case a reasonable course is to reopen the original
ticket and close any new reports as duplicates of the original one. The bug tracking software
keeps track of this relationship bidirectionally, so that reproduction information in the dupli-
cates is available to the original ticket, and vice versa.

A third variation is for the developers to close the ticket, thinking they have fixed it, only to
have the original reporter reject the fix and reopen it. This is usually because the developers
simply don't have access to the environment necessary to reproduce the bug, or because they
didn't test the fix using the exact same reproduction recipe as the reporter.

Aside from these variations, there may be other small details of the life cycle that vary de-
pending on the tracking software. But the basic shape is the same, and while the life cycle it-
self is not specific to open source software, it has implications for how open source projects
use their bug trackers.

The tracker is as much a public face of the project as the repository, mailing lists or web
pages.15 Anyone may file a ticket, anyone may look at a ticket, and anyone may browse the
list of currently open tickets. It follows that you never know how many people are waiting to
see progress on a given ticket. While the size and skill of the development community con-
strains the rate at which tickets can be resolved, the project should at least try to acknowl-
edge each ticket the moment it appears. Even if the ticket lingers for a while, a response en-
courages the reporter to stay involved, because she feels that a human has registered what
she has done (remember that filing a ticket usually involves more effort than, say, posting an
email). Furthermore, once a ticket is seen by a developer, it enters the project's conscious-
ness, in the sense that the developer can be on the lookout for other instances of the ticket,
can talk about it with other developers, etc.

This centrality to the life of the project implies a few things about trackers' technical fea-
tures:

• The tracker should be connected to email, such that every change to a ticket, including its
initial filing, causes a notification mail to go out to some set of appropriate recipients. See
the section called “Interaction with Email” [90] later in this chapter for more on this.

15Indeed, as the section called “Evaluating Open Source Projects” [159] discusses, the bug tracker is actually the first
place to look, even before the repository, when you're trying to evaluate a project's overall health.

89

Technical Infrastructure

• The form for filing tickets should have a place to record the reporter's email address or
other contact information, so she can be contacted for more details.16 But if possible, it
should not require the reporter's email address or real identity, as some people prefer to re-
port anonymously. See the section called “Anonymity and Involvement” [59] for more
on the importance of anonymity.

• The tracker should have APIs. I cannot stress the importance of this enough. If there is no
way to interact with the tracker programmatically, then in the long run there is no way to
interact with it scalably. APIs provide a route to customizing the behavior of the tracker
by, in effect, expanding it to include third-party software. Instead of being just the specif-
ic ticket tracking software running on a server somewhere, it's that software plus whatev-
er custom behaviors your project implements elsewhere and plugs in to the tracker via the
APIs.

Also, if your project uses a proprietary ticket tracker, as is becoming more common now
that so many projects host their code on proprietary canned hosting sites and thus use that
site's built-in tracker, APIs provide a way to avoid being locked in to that hosting plat-
form. You can, in theory, take the ticket history with you if you choose to go somewhere
else (you may never exercise this option, but think of it as insurance — and some projects
have actually done it).

Fortunately, the ticket trackers of most major hosting sites have APIs.

Interaction with Email

Most trackers now have at least decent email integration features: at a minimum, the abili-
ty to create new tickets by email, the ability to "subscribe" to a ticket to receive emails about
activity on that ticket, and the ability to add new comments to a ticket by email. Some track-
ers even allow one to manipulate ticket state (e.g., change the status field, the assignee, etc)
by email, and for people who use the tracker a lot — such as an issue manager (see the sec-
tion called “Issue Manager” [254]) — that can make a huge difference in their ability to
stay on top of tracker activity and keep things organized.

The tracker email feature that is likely to be used by everyone, though, is simply the abil-
ity to read a ticket's activity by email and respond by email. This is a valuable time-saver
for many people in the project, since it makes it easy to integrate bug traffic into one's daily
email flow. But don't let this integration give anyone the illusion that the total collection of
bug tickets and their email traffic is the equivalent of the development mailing list. It's not,
and the section called “Choose the Right Forum” [193] discusses why this is important
and how to manage the difference.

16For logged-in users whom the system already knows, these details are automatically filled in, of course.

90

Technical Infrastructure

Pre-Filtering the Bug Tracker
Most ticket databases eventually suffer from the same problem: a crushing load of duplicate
or invalid tickets filed by well-meaning but inexperienced or ill-informed users. The first
step in combating this trend is usually to put a prominent notice on the front page of the bug
tracker, explaining how to tell if a bug is really a bug, how to search to see if it's already been
reported, and finally, how to effectively report it if one still thinks it's a new bug.

This will reduce the noise level for a while, but as the number of users increases, the problem
will eventually come back. No individual user can be blamed for it. Each one is just trying to
contribute to the project's well-being, and even if their first bug report isn't helpful, you still
want to encourage them to stay involved and file better tickets in the future. In the meantime,
though, the project needs to keep the ticket database as free of junk as possible.

The two things that will do the most to prevent this problem are: making sure there are peo-
ple watching the bug tracker who have enough knowledge to close tickets as invalid or du-
plicates the moment they come in, and requiring (or strongly encouraging) users to confirm
their bugs with other people before filing them in the tracker.

The first technique seems to be used universally. Even projects with huge ticket databases
(say, the Debian bug tracker at https://bugs.debian.org/, which contained 996,003 tickets as
of this writing) still arrange things so that someone sees each ticket that comes in. It may be
a different person depending on the category of the ticket. For example, the Debian project is
a collection of software packages, so Debian automatically routes each ticket to the appropri-
ate package maintainers. Of course, users can sometimes misidentify a ticket's category, with
the result that the ticket is sent to the wrong person initially, who may then have to reroute
it. However, the important thing is that the burden is still shared — whether the user guesses
right or wrong when filing, ticket watching is still distributed more or less evenly among the
developers, so each ticket is able to receive a timely response.

The second technique is less widespread, probably because it's harder to automate. The es-
sential idea is that every new ticket gets "buddied" into the database. When a user thinks he's
found a problem, he is asked to describe it on one of the mailing lists, or in a chat room, and
get confirmation from someone that it is indeed a bug. Bringing in that second pair of eyes
early can prevent a lot of spurious reports. Sometimes the second party is able to identify
that the behavior is not a bug, or is fixed in recent releases. Or she may be familiar with the
symptoms from a previous ticket, and can prevent a duplicate filing by pointing the user to
the older ticket. Often it's enough just to ask the user "Did you search the bug tracker to see
if it's already been reported?" Many people simply don't think of that, yet are happy to do the
search once they know someone's expecting them to.

The buddy system can really keep the ticket database clean, but it has some disadvantages
too. Many people will file solo anyway, either through not seeing or through disregarding the

91

https://bugs.debian.org/

Technical Infrastructure

instructions to find a buddy for new tickets. Thus it is still necessary for some experienced
participants to watch the ticket database. Furthermore, because most new reporters don't un-
derstand how difficult the task of maintaining the ticket database is, it's not fair to chide them
too harshly for ignoring the guidelines. The watchers must be vigilant, yet exercise restraint
in how they bounce unbuddied tickets back to their reporters. The goal is to train each re-
porter to use the buddying system in the future, so that there is an ever-growing pool of peo-
ple who understand the ticket-filtering system. On seeing an unbuddied ticket, the ideal steps
are:

1. Immediately respond to the ticket, politely thanking the user for filing, but pointing them
to the buddying guidelines (which should, of course, be prominently posted on the web
site).

2. If the ticket is clearly valid and not a duplicate, approve it anyway, and start it down the
normal life cycle. After all, the reporter's now been informed about buddying, so there's
no point closing a valid ticket and wasting the work done so far.

3. Otherwise, if the ticket is not clearly valid, close it, but ask the reporter to reopen it if they
get confirmation from a buddy. When they do, they should put a reference to the confir-
mation thread (e.g., a URL into the mailing list archives).

Remember that although this system will improve the signal/noise ratio in the ticket database
over time, it will never completely stop the misfilings. The only way to prevent misfilings
entirely is to close off the bug tracker to everyone but developers — a cure that is almost al-
ways worse than the disease. It's better to accept that cleaning out invalid tickets will always
be part of the project's routine maintenance, and to try to get as many people as possible to
help.

See also the section called “Issue Manager” [254].

Real-Time Chat Systems
Many projects offer real-time chat rooms in which developers can have fast-turnaround con-
versations with each other and with users. Such conversations often precede a bug report or
some other kind of more formal, tracked contribution.

For decades, the standard real-time chat system for open source projects was Internet Re-
lay Chat (IRC), which predates the World Wide Web and uses a text-based interface and
command language. Starting around 2014-2015, a number of open source projects began
trying out newer, web-browser-friendly chat systems, in particular the open source plat-

92

Technical Infrastructure

forms https://zulip.org/, https://mattermost.org/, https://rocket.chat/, and the Matrix17 proto-
col. (A few projects also experimented with the proprietary online chat service Slack when
it was new, but Slack hasn't been widely adopted by open source projects and I wouldn't
recommend it for them. In a post written when that early experimentation was still un-
der way, Drew DeVault lists some of the reasons why Slack isn't suitable: https://drewde-
vault.com/2015/11/01/Please-stop-using-slack.html.

I don't know whether any of these new systems will emerge as the long-term default choice
for open source projects. Try looking at the open source chat systems used by similar
projects and use that as guidance in choosing yours. Matrix compatibility (sometimes re-
ferred to as Matrix "bridging" or having a "Matrix bridge") is a good property to keep in
mind, and if possible IRC bridging too, since some developers still like to use their IRC
clients with non-IRC server applications.

Chat Rooms and Growth
A chat server is usually divided into virtual chat rooms. The chat application may call these
"channels", or "streams", or something else, but the concept is generally the same: a chat
room is a shared space in which everyone who is in that room can see every message post-
ed to the room. Every project maintains a certain set of advertised, topic-specific public
rooms; these are the entry points into chat for new participants.18 Some projects maintain a
"welcome" or "general" room specifically for newcomers to start out in, with current project
members watching that room in order to greet new arrivals, but it's also fine to just have new
people come directly into the regular rooms to ask their questions too.

Exactly how many rooms to have, and for what topics, will depend on your project, but it's
best to start out with a small number of rooms — even just one — and only add more when
it becomes clearly necessary. Much of the value of real-time chat comes from people being
together in the same rooms and serendipitously seeing conversations between others. the sec-
tion called “Handling Growth” [185] discusses when and how to divide into more rooms.

Nick-Flagging and Notifications
Users who are new to such chat systems usually need some time to learn the conventions of
real-time written communications. While each project has its own local customs, there is at

17Matrix is actually a protocol and an open source reference implementation. The protocol is supported by an increas-
ing number of chat applications, including IRC as well as more modern systems. In the words of Julian Foad in https://
issues.apache.org/jira/browse/SVN-525#comment-17286477, "Matrix is a 'spiritual successor' to IRC, and truly Open,
federated, and standardized. ... In my opinion Matrix is very much the Right Way forward for all sorts of reasons." For
more information, see https://matrix.org/ and https://en.wikipedia.org/wiki/Matrix_(protocol).
18When two or a few users wish to chat privately, it is sometimes said that they create a "private room". Such rooms are
usually temporary.

93

https://zulip.org/
https://mattermost.org/
https://rocket.chat/
https://drewdevault.com/2015/11/01/Please-stop-using-slack.html
https://drewdevault.com/2015/11/01/Please-stop-using-slack.html
https://issues.apache.org/jira/browse/SVN-525#comment-17286477
https://issues.apache.org/jira/browse/SVN-525#comment-17286477
https://matrix.org/
https://en.wikipedia.org/wiki/Matrix_(protocol)

Technical Infrastructure

least one convention that seems to be common in almost all projects: nick-flagging for notifi-
cation.

A user's nick is their nickname, their handle in the chat system. It might or might not be some
form of their real name, but in any case it is how they are identified in chat. When you want
to speak to that person, you prefix your message with her handle (perhaps followed by a sep-
arator character such as a colon). Her chat client, upon seeing her handle used in a message,
notifies her by whatever means she has configured — perhaps by flashing a notification pop-
up on her screen (even when she does not have the chat window in front of her right then), or
perhaps via an audible signal.

This notification only happens for messages that contain her handle, not for other messages.
She may still see those other messages go by if she happens to be in that chat room right
then — developers often "lurk" in a chat room just to see what's going on — but thanks to
nick-flagging she can easily tell the difference between messages addressed to her and other
messages. A message can contain multiple nicks, of course, in which case each of the corre-
sponding people would be notified.

The ability for users to separate the conversations they are involved in from other conversa-
tions is key to successful use of real-time chat in open source projects. It is how a large num-
ber of developers can be in a "room" and all talk "together" without getting their different
streams of conversation entangled. Each developer can tell which messages are specifically
requesting her attention and which ones are not. It is analogous to an observation Deaf peo-
ple sometimes make about the advantage of communicating with sign language instead of
spoken language in a crowded room: as long as you have a clear line of sight to your inter-
locutor, the "noisiness" of the room (whether with signed or spoken language) does not inter-
fere much with your ability to maintain the conversation. Similarly, a chat room can be very
busy, but as long as everyone follows the convention of nick-flagging, people can simultane-
ously participate in their own chats and keep an eye on whatever else they're interested in, at
least to the limit of their attentional capacity.19

19See http://www.rants.org/2013/01/09/the-irc-curmudgeon/ for a more detailed examination of nick-flagging and some
examples.

94

http://www.rants.org/2013/01/09/the-irc-curmudgeon/

Technical Infrastructure

Paste Rooms and Paste Sites

Normally, the fact that a chat room is a shared space is a good thing, as it allows peo-
ple to jump into a conversation when they think they have something to contribute,
and allows spectators to learn by watching. But it becomes problematic when someone
has to provide a large quantity of information at once, such as a large error message or
a transcript from a debugging session, because pasting too many lines of output into
the room may disrupt other conversations.

One solution is to have a dedicate chat room just for pastes. The user posts their tran-
script there, then grabs the URL to that specific message20 and posts the URL in the
original chat room, nick-flagging whoever should see it.

Another solution is to set up a separate pastebin site, which is separate from the chat
service operates essentially as described above: the user posts their transcript to the
paste site to create a new paste, which in turn has its own unique URL, which the
user then presents back in the chat room. Historically there have also been many pub-
lic pastebin sites, so you might not need to set up a dedicated one for your project,
but note that public pastebin sites tend to be short-lived (my guess is that they get
spammed a lot and end up being expensive to maintain). As of this writing in early
2022, https://hastebin.com/ is up and running. If you do need to set up your own, there
are many open source codebases available (including the code that backs hastebin: see
https://hastebin.com/about.md.

Chat Bots
Chat rooms can have non-human members too, so-called bots, that provide automated ser-
vices such as answering frequently-asked questions. Typically, a bot is addressed just like
any other member of the channel, that is, commands are delivered by "speaking to" the bot.
No special server privileges are required to run a bot. A bot is just like any other user joining
a channel.

People who spend enough time in chat learn how to manipulate these bots and use them to
help others. For example, when one user comes into a room and asks a common question, an-
other more experienced user may issue a terse command to the local bot telling it to provide
that user with a specific detailed answer that the bot has been previously told to remember.

If your chat rooms tend to get the same questions over and over, I highly recommend setting
up a bot. Only a small percentage of channel users will acquire the expertise needed to ma-

20Every message posted in an online chat has its own unique URL permalink, just as every comment in, say, a bug ticket
does. See the section called “Treat All Resources Like Archives” [189] for more about this principle and its implica-
tions.

95

https://hastebin.com/
https://hastebin.com/about.md

Technical Infrastructure

nipulate the bot, but those users will answer a disproportionately high percentage of ques-
tions, because the bot enables them to respond so much more efficiently. The exact com-
mand set and behaviors will differ among bot implementations; unfortunately, the diversity
of bot command languages seems to be rivaled only by the diversity of wiki syntaxes.

Commit Notifications in Chat

One particular kind of bot (also known as an "integration") watches the project's version con-
trol repository and broadcasts commit activity to the relevant chat rooms as it happens. While
this offers less technical utility than subscription-based commit notifications (see the sec-
tion called “Commit Notifications / Commit Emails” [85]), since interested observers
might or might not be around when a particular commit pops up in the room, it is of immense
social utility. It gives people the sense of being part of something alive and active — they
see progress happening right before their eyes. Because the notifications appear in a shared
space, people in the chat room will often react in real time, congratulating the committer, or
asking a question related to the commit, or even reviewing the commit and commenting on it
on the spot.

The technical details up of setting this up are beyond the scope of this book, but I recom-
mend learning how to enable it in your project's chat platform. It's worth the effort. Most of
the major hosting sites make this integration fairly easy to set up. In addition to "integration",
some key words to try in a search are "hook", "trigger", and "extension".

Wikis
A well-run wiki can be a wonderful thing for users and developers. Wikis offer the lowest
possible barrier-to-entry for those seeking to contribute to the project. You just click and ed-
it — the wiki software will keep track of the change, make sure you get credited, notify any-
one who needs to be notified, and immediately publish the new content to the world.

However, wikis also require some centralized effort to maintain. When open source software
project wikis go bad, they usually go bad for the same reasons: lack of consistent organiza-
tion and editing (leading to a mess of outdated and redundant pages) and lack of clarity on
who the target audience is for a given page or section.

From the outset, try to have a clear page organization strategy and even a pleasing visual lay-
out, so that visitors (i.e., potential editors) will instinctively know how to fit their contribu-
tions in. Make sure the intended audience is clear at all times to all editors. Most importantly,
document these standards in the wiki itself and point people to them, so editors have some-
where to go for guidance. Too often, wiki administrators fall victim to the fantasy that be-
cause hordes of visitors are individually adding high quality content to the site, the sum of all
these contributions must therefore also be of high quality. That's not how collaborative edit-

96

Technical Infrastructure

ing works. Each individual page or paragraph may be good when considered by itself, but it
will not be good if embedded in a disorganized or confusing whole.

In general, wikis will amplify any failings that are present from early on, since contributors
tend to imitate whatever patterns they see in front of them. So don't just set up the wiki and
hope everything falls into place. Prime it with well-written content, so people have a tem-
plate to follow.

The shining example of a well-run wiki is Wikipedia, of course, but in many ways it's also
a poor example because it gets so much more editorial attention than any other wiki in the
world. Still, if you examine Wikipedia closely, you'll see that its administrators laid a very
thorough foundation for cooperation. There is extensive documentation on how to write new
entries, how to maintain an appropriate point of view, what sorts of edits to make, what ed-
its to avoid, a dispute resolution process for contested edits (involving several stages, includ-
ing eventual arbitration), and so forth. It also has authorization controls, so that if a page is
the target of repeated inappropriate edits, senior editors can lock it down until the problem
is resolved. In other words, they didn't just throw some templates onto a web site and hope
for the best. Wikipedia works because its editors give careful thought to getting thousands of
strangers to tailor their writing to a common vision. While you may not need the same level
of preparedness to run a wiki for a free software project, the spirit is worth emulating.

Wikis and Spam
Never allow open, anonymous editing on your wiki. The days when that was possible are
long gone now; today, any open wiki other than Wikipedia will be covered completely with
spam in approximately 3 milliseconds. (Wikipedia is an exception only because it has an un-
usually large number of editors willing to clean up spam quickly, and because it has a well-
funded organization behind it devoted to fighting spam using various large-scale monitoring
techniques not practically available to smaller projects.)

All edits in your project's wiki should come from registered users; if your wiki software
doesn't already enforce this by default, then configure it to enforce that. Even then you may
need to keep watch for spam edits from users who registered under false pretenses for the
purpose of spamming.21

Choosing a Wiki
If your project is on GitHub or some other free hosting site, it's usually best to use the built-
in wiki feature that most such sites offer. That way your wiki will be automatically integrated

21You may be able to allow editing by non-registered users if you put some spam countermeasures in place. For exam-
ple, the Emacs Wiki (https://www.emacswiki.org/) allows editing by anyone, but to submit your edit you must answer a
question that a bot is unlikely to be able to answer accurately.

97

https://www.emacswiki.org/

Technical Infrastructure

with your repository or other project permissions, and you can rely on the site's user account
system instead of having a separate registration system for the wiki.

If you are setting up your own wiki, then you're free to choose which one, and fortunately
there are plenty of good free software wiki implementations available. I've had good experi-
ence with DokuWiki (https://www.dokuwiki.org/dokuwiki), but there are many others. There
is a wonderful tool called the Wiki Choice Wizard at http://www.wikimatrix.org/ that allows
you to specify the features you care about (an open source license can be one of them) and
then view a chart comparing all the wiki software that meets those criteria. Another good
resource is Wikipedia's own page comparing different wikis: https://en.wikipedia.org/wi-
ki/Comparison_of_wiki_software.

I do not recommend using MediaWiki (https://www.mediawiki.org) as the wiki software
for most projects. MediaWiki is the software on which Wikipedia itself runs, and while it is
very good at that, its administrative facilities are tuned to the needs of a site unlike any oth-
er wiki on the Net — and actually not so well-tuned to the needs of smaller editing commu-
nities. Many projects are tempted to choose MediaWiki because they think it will be easi-
er for users who already know its editing syntax from having edited at Wikipedia, but this
turns out to be an almost non-existent advantage for several reasons. First, wikis in gener-
al, including Wikipedia, are tending toward rich-text in-browser editing anyway, so that no
one really needs to learn the underlying wiki syntax unless they aim to be a power user. Se-
cond, many other wikis offer a MediaWiki-syntax plugin, so you can have that syntax any-
way if you really want it. Third, for those who will use a plaintext syntax instead of rich-text
editing, it's better to use a standardized generic markup format like Markdown (https://dar-
ingfireball.net/projects/markdown/), which is available in many wikis either natively or via a
plugin, than to use any flavor of wiki syntax. If you support Markdown, then people can edit
in your wiki using the same markup syntax they already know from GitHub and other popu-
lar tools.

Translation Infrastructure
Various online platforms now exist to help automate the organization and integration of hu-
man-language translation work in open source projects. "Translation work" here means not
just the process of translating the software's documentation, but also its run-time user inter-
face, error messages, etc into different languages, so that each user can interact with the soft-
ware in their preferred language. (See the section called “Translation Manager” [252] for
more about this process.)

It is not strictly necessary to use a separate translation platform at all. Your translators could
work directly in the project's repository, like any other developer. But because translation is
a specialized skill, and translators' methods are basically the same from project to project, the
process is quite amenable to being made more efficient through the use of dedicated tools.

98

https://www.dokuwiki.org/dokuwiki
http://www.wikimatrix.org/
https://en.wikipedia.org/wiki/Comparison_of_wiki_software
https://en.wikipedia.org/wiki/Comparison_of_wiki_software
https://www.mediawiki.org
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/

Technical Infrastructure

Web-based translation platforms make it easier for translators to get involved by removing
the requirement that a translator (who may have linguistic expertise but not development ex-
pertise) be comfortable with the project's development tools, and by providing a working en-
vironment that is specially optimized for translation rather than for general code develop-
ment.

Until 2013, the obvious recommendation for a platform would have been https://tran-
sifex.com/, which was both the premier software translation site and was open source soft-
ware itself. However, its main corporate sponsors switched to a closed, proprietary version
in March 2013,22 and development of the open source version stopped then. Transifex still
offers zero-cost service for open source projects, as does a competing proprietary platform
called Lokalise. But your translators may prefer to invest their time in learning a fully open
source platform, and there are several to choose from: https://weblate.org/, http://zanata.org/,
https://translatewiki.net/, and https://translations.launchpad.net/ (and there are probably oth-
ers I don't know about, so look around and ask in other translation communities).

22See https://github.com/transifex/transifex-old-core/issues/206#issuecomment-15243207 for more.

99

https://transifex.com/
https://transifex.com/
https://weblate.org/
http://zanata.org/
https://translatewiki.net/
https://translations.launchpad.net/
https://github.com/transifex/transifex-old-core/issues/206#issuecomment-15243207

Technical Infrastructure

Internationalization (i18n) and Localization (l10n)

The process of adapting software user interfaces for different groups of humans in-
volves two terms that are easily confused: "internationalization" and "localization".

Internationalization refers to the process of putting software source code into a form
that allows the program to be translated (or "localized" — see below). It includes,
among other things, marking all user-visible strings (interface texts, error messages,
etc) so that they can be automatically replaced by translated versions when the soft-
ware is deployed in a "locale". The translations are supplied by humans, but interna-
tionalization is what allows those translations to be automatically integrated into the
software.

Thus, internationalization does not involve performing any actual translation. Rather,
it's about putting the program into a form that allows translators, or "localizers", to get
to work.

i18n is a common abbreviation for "internationalization", since the word is so long to
type. The "18" refers to the number of letters between the initial "i" and then final "n".

Localization, meanwhile, refers to supplying an actual translation into a specific lan-
guage, as well as to other changes needed for that audience (for example, conversion
of measurement units, monetary units, etc). Because it may involve more than just
language change, the term is "localization" rather than "translation", and the destina-
tion — the intended audience — is called a locale. A locale does not always corre-
spond to geographic area or a political grouping. Localizing a program for Yiddish, for
example, doesn't say anything about where it will be run nor by whom, other than that
they know Yiddish.

l10n is likewise a common abbreviation for "localization", using the same scheme as
"i18n".

See https://en.wikipedia.org/wiki/Internationalization_and_localization for more infor-
mation about i18n and l10n.

Social Networking Services
Perhaps surprisingly for such social endeavors, open source projects typically make only lim-
ited use of what most people think of as "social networking" services. But this seeming omis-
sion is really a matter of definition: most of the infrastructure that open source projects have
been using for decades, since long before "social networking" became a recognized term,

100

https://en.wikipedia.org/wiki/Internationalization_and_localization

Technical Infrastructure

is actually social networking software even if it isn't called that. The reason open source
projects tend not to have much presence as projects on, say, Facebook is just that the ser-
vices Facebook offers are not well-tuned to what open source projects need. On the other
hand, as you might expect, the infrastructure these projects have been using and improving
for many years is quite well-tuned to their needs.

Most projects do use Twitter and similar microblog services, because sending out short quips
and announcements that can be easily forwarded and replied to is a good way for a project to
have conversations with its community; see LibreOffice's "@AskLibreOffice" tweet stream
at https://twitter.com/AskLibreOffice for an example of this. Projects also sometimes use ser-
vices such as https://www.eventbrite.com/ and https://www.Meetup.com/ to arrange in-per-
son meetings of users and developers.

But beyond lightweight services such as those, most free software projects do not maintain
a large presence on mainstream social media platforms (though individual developers some-
times do, of course, and often discuss the project there). The reward the project gets in ex-
change for that investment of time and attention appears not to be high enough to be worth
the effort.

101

https://twitter.com/AskLibreOffice
https://www.eventbrite.com/
https://www.Meetup.com/

Chapter 4. Social and Political
Infrastructure

The first questions people usually ask about free software are "How does it work? What
keeps a project running? Who makes the decisions?" I'm always dissatisfied with bland re-
sponses about meritocracy, the spirit of cooperation, running code speaking for itself, etc.
The fact is, the question is not easy to answer. Meritocracy, cooperation, and running code
are all part of it, but they do little to explain how projects actually make decisions on a day-
to-day basis, and say nothing about how conflicts are resolved.

This chapter tries to show the structural properties successful projects have in common. I
mean "successful" not just in terms of technical quality, but in terms of operational health
and survivability. Operational health is the project's ongoing ability to incorporate new code
contributions and new developers, and to be responsive to incoming bug reports. Survivabil-
ity is the project's ability to continue independently of any individual participant or spon-
sor — think of it as the likelihood that the project would continue even if all of its founding
members were to move on to other things.1

There are various ways to achieve this kind of success. Some involve a formal governance
structure, by which debates are resolved, new developers are invited in (and sometimes out),
new features planned, and so on. Others use a less formal structure, but more personal self-
restraint on the part of leaders, to produce an atmosphere of fairness that people can rely on
as a de facto form of governance. Both ways lead to the same result: a sense of institutional
permanence, supported by habits and procedures that are well understood by everyone who
participates.

Forkability
The indispensable ingredient that binds developers together on a free software project, and
makes them willing to compromise when necessary, is the code's forkability: the ability of
anyone to take a copy of the source code and use it to start a competing project, known as a
fork.2

The paradoxical thing is that the possibility of forks is usually a much greater force in free
software projects than actual forks are. Actual forks are very rare. Because a fork is usual-

1This is also known as the "Bus Factor", that is, how many participants would have to get hit by a bus (figuratively
speaking) for the project to be unable to continue. See https://en.wikipedia.org/wiki/Bus_factor.
2Meaning a "hard fork", not the unrelated "development fork" that is often a normal part of the development cycle. See
the section called “"Development Forks" versus "Hard Forks"” [266] for more on this crucial distinction.

102

https://en.wikipedia.org/wiki/Bus_factor

Social and Politi-
cal Infrastructure

ly bad for everyone (for reasons examined in detail in the section called “Forks” [266]),
the more serious the threat of a fork becomes, the more willing people are to compromise to
avoid it.

The potential for forks is the reason there are no true dictators in free software projects. This
may seem like a surprising claim, considering how common it is to hear someone called the
"dictator" (sometimes softened to "benevolent dictator") in a given open source project. But
this kind of dictatorship is special, quite different from our conventional understanding of the
word. Imagine a ruler whose subjects could copy her entire territory at any time and move
to the copy to rule as they see fit. Would not such a ruler govern very differently from one
whose subjects were bound to stay under her rule no matter what she did?

This is why even projects that are not formally organized as democracies are, in practice,
democracies when it comes to important decisions.3 Replicability implies forkability, and
forkability implies consensus. It may well be that everyone is willing to defer to one leader,4

but this is because they choose to do so, in a situation where they really do have freedom of
choice.

The nominal "dictator" has no magical hold over the project. A key property of all open
source licenses is that they do not give one party more power than any other in deciding how
the code can be changed or used. If the dictator were to suddenly start making bad decisions,
there would be restlessness, followed eventually by revolt and a fork. Except, of course, that
things rarely get that far, because the dictator compromises first.

But just because forkability puts an upper limit on how much power anyone can exert in a
project doesn't mean there aren't important differences in how projects are governed. You
don't want every decision to come down to the last-resort question of who might consid-
er a fork. That would get tiresome very quickly, and sap energy away from real work. The
next two sections examine different ways to organize projects such that most decisions go
smoothly. These two examples are somewhat idealized extremes; many projects fall some-
where along a continuum between them.

Benevolent Dictators
The benevolent dictator model is exactly what it sounds like: final decision-making author-
ity rests with one person, who, by virtue of personality and experience, is expected to use it
wisely.

3Though note that this still leaves a lot of room for variety, and the goals of a project's main sponsors usually have a sig-
nificant effect on the project's structure and operating processes. As mentioned earlier in Chapter 1, Introduction [1], the
report Open Source Archetypes: A Framework For Purposeful Open Source (https://opentechstrategies.com/archetypes),
is worth consulting if you want to understand more about this.
4The most famous example is probably Linus Torvalds in Linux kernel development.

103

https://opentechstrategies.com/archetypes

Social and Politi-
cal Infrastructure

Although "benevolent dictator" (or BD) is the standard term for this role, it would be better
to think of it as "community-approved arbitrator" or "judge". Generally, benevolent dictators
do not actually make all the decisions, or even most of the decisions. It's unlikely that one
person could have enough expertise to make consistently good decisions across all areas of
the project, and anyway, quality developers won't stay around unless they have some influ-
ence in the project. Therefore, benevolent dictators commonly do not dictate much. Instead,
they let things work themselves out through discussion and experimentation whenever pos-
sible. They participate in those discussions themselves, but as regular developers, often de-
ferring to an area maintainer who has more expertise in the question at hand. Only when it is
clear that no consensus can be reached, and that most of the group wants someone to make a
decision so that development can move on, does she put her foot down and say "This is the
way it's going to be." Reluctance to make decisions by fiat is a trait shared by almost all suc-
cessful benevolent dictators; it is one of the reasons they manage to keep the role.

Who Can Be a Good Benevolent Dictator?

Being a BD requires a combination of traits. It needs, first of all, a well-honed sensitivity to
one's own influence in the project, which in turn brings self-restraint. In the early stages of a
discussion, one should not express opinions and conclusions with so much certainty that oth-
ers feel like it's pointless to dissent. People must be free to air ideas, even stupid ideas. It is
inevitable that the BD will post a stupid idea from time to time too, of course, and therefore
the role also requires an ability to recognize and acknowledge when one has made a bad de-
cision — though this is really a trait that any good developer should have. The difference is
that the BD can afford to slip from time to time without worrying about long-term damage
to her credibility. Developers with less seniority may not feel so secure, so the BD should
phrase critiques or contrary decisions with some sensitivity for how much weight her words
carry, both technically and psychologically.

The BD does not need to have the sharpest technical skills of anyone in the project. She
must be skilled enough to work on the code herself, and to understand and comment on
any change under consideration, but that's all. The BD position is neither acquired nor held
by virtue of intimidating coding skills. What is important is experience and overall design
sense — not necessarily the ability to produce good design on demand, but the ability to rec-
ognize and endorse good design when encountered.

It is common for the benevolent dictator to be a founder of the project, but this is more a
correlation than a cause. The sorts of qualities that make one able to successfully start a
project — technical competence, ability to persuade other people to join, and so on — are al-
so the qualities a BD would need. And of course, founders start out with a sort of automatic
seniority, which can often be enough to make benevolent dictatorship by the founder be the
path of least resistance for all concerned.

104

Social and Politi-
cal Infrastructure

Remember that the potential to fork goes both ways. A BD can fork a project just as easily
as anyone else, and some have occasionally done so, when they felt that the direction they
wanted to take the project was different from where the majority of other developers wanted
to go. Because of forkability, it does not matter whether the benevolent dictator has control
over the currently accepted authoritative project repository. People sometimes talk of reposi-
tory control as though it were the ultimate source of power in a project, but in fact it is irrele-
vant. The ability to add or remove people's commit privileges for one project on a particular
hosting site affects only that copy of the project on that site. Prolonged abuse of that power,
whether by the BD or someone else, would simply lead to developers moving over to a dif-
ferent copy of the project.

Whether your project should have a benevolent dictator, or would run better with some less
centralized form of governance, largely depends on who is available to fill the role. As a gen-
eral rule, if it's simply obvious to everyone who should be the BD, then that's the way to go.
But if no candidate for BD is immediately obvious, then the project should probably use a
decentralized decision-making process, as described in the next section.

Consensus-based Democracy
As projects get older, they tend to move away from the benevolent dictatorship model and
toward more openly democratic systems. This is not necessarily out of dissatisfaction with
a particular BD. It's simply that group-based governance is more "evolutionarily stable", to
borrow a biological metaphor. Whenever a benevolent dictator steps down, or attempts to
spread decision-making responsibility more evenly, it is an opportunity for the group to set-
tle on a new, non-dictatorial system — to establish a constitution, as it were. The group may
not take this opportunity the first time, or the second, but eventually they will; once they do,
the decision is unlikely ever to be reversed. It is easy to see why: if a group of N people were
to vest one of their number with special power, it would mean that N - 1 people were choos-
ing to decrease their individual influence. People usually don't want to do that. Even if they
did, the resulting dictatorship would still be conditional: the group anointed the BD, so clear-
ly the group could depose the BD. Therefore, once a project has moved from leadership by a
charismatic individual to a more formal, group-based system, it rarely moves back.

The details of how these systems work vary widely, but there are two common elements:
one, the group works by consensus most of the time; two, there is a formal voting mecha-
nism to fall back on when consensus cannot be reached.

Consensus simply means an agreement that everyone is willing to live with. It is not an am-
biguous state: a group has reached consensus on a given question when someone proposes
that consensus has been reached and no one contradicts the assertion. The person proposing
consensus should, of course, state specifically what the consensus is and what actions would
be taken in consequence of it (if they are not obvious).

105

Social and Politi-
cal Infrastructure

Most conversation in a project is on technical topics, such as the right way to fix a cer-
tain bug, whether or not to add a feature, how strictly to document interfaces, etc. Consen-
sus-based governance works well because it blends seamlessly with the technical discus-
sion itself. By the end of a discussion, there is often general agreement on what course to
take. Someone will usually make a concluding post, which is simultaneously a summary of
what has been decided and an implicit proposal of consensus. This provides a last chance for
someone else to say "Wait, I didn't agree to that. We need to hash this out some more."

For small, uncontroversial decisions, the proposal of consensus is implicit. For example,
when a developer spontaneously commits a bugfix, the commit itself is a proposal of con-
sensus: I assume we all agree that this bug needs to be fixed, and that this is the way to fix
it. Of course, the developer does not actually say that; she just commits the fix, and the oth-
ers in the project do not bother to state their agreement, because silence is consent. If some-
one commits a change that turns out not to have consensus, the result will simply be that the
project discusses the change as though it had not already been committed. The reason this
works is the topic of the next section.

Version Control Means You Can Relax

The fact that the project's source code is kept under version control means that most deci-
sions can be easily unmade. The most common way this happens is that someone commits
a change mistakenly thinking everyone will be happy with it, only to be met with objections
after the fact. It is typical for such objections to start out with an obligatory apology for hav-
ing missed out on prior discussion, though this may be omitted if the objector finds no record
of such a discussion in the mailing list archives. Either way, there is no reason for the tone of
the discussion to be different after the change has been committed than before. Any change
can be reverted,5 at least until dependent changes are introduced (i.e., new code that would
break if the original change were suddenly removed). Version control gives the project a
way to undo the effects of bad or hasty judgement. This, in turn, frees people to trust their in-
stincts about how much feedback is necessary before doing something.

This also means that the process of establishing consensus need not be very formal. Most
projects handle it by feel. Minor changes can go in with no discussion, or with minimal dis-
cussion followed by a few nods of agreement. For more significant changes, especially ones
with the potential to destabilize a lot of code, people should wait a day or two before assum-
ing there is consensus, the rationale being that no one should be marginalized in an important
conversation simply because he didn't check email frequently enough.

5Of course, it's good manners and good sense to discuss before reverting. Reverting a change is not usually the way to
start a conversation about whether it should be reverted. There are sometimes situation where it may be appropriate to
perform the reversion before the conversation about it has definitively concluded, but even then it's still important to
have started the conversation first.

106

Social and Politi-
cal Infrastructure

Thus, when someone is confident she knows what needs to be done, she should just go ahead
and do it. This applies not only to software fixes, but to web site updates, documentation
changes, and anything else unlikely to be controversial. Usually there will be only a few in-
stances where an action draws disapproval, and these can be handled on a case-by-case ba-
sis. Of course, one shouldn't encourage people to be headstrong. There is still a psychologi-
cal difference between a decision under discussion and one that has already taken effect but
is technically reversible. People always feel that momentum is allied to action, and will be
slightly more reluctant to revert a change than to prevent it in the first place. If a developer
abuses this fact by committing potentially controversial changes too quickly, however, peo-
ple can and should complain, and hold that developer to a stricter standard until things im-
prove.

When Consensus Cannot Be Reached, Vote

Inevitably, some debates just won't consense. When all other means of breaking a deadlock
fail, the solution is to vote. But before a vote can be taken, there must be a clear set of choic-
es on the ballot. Here, again, the normal process of technical discussion blends serendipitous-
ly with the project's decision-making procedures. The kinds of questions that come to a vote
often involve complex, multifaceted issues. In any such complex discussion, there are usu-
ally one or two people playing the role of honest broker: posting periodic summaries of the
various arguments and keeping track of where the core points of disagreement (and agree-
ment) lie. These summaries help everyone measure how much progress has been made to-
ward resolving the issues, and remind everyone of what questions remain to be addressed.
Those same summaries can serve as prototypes for a ballot sheet, should a vote become nec-
essary. If the honest brokers have been doing their job well, they will be able to credibly call
for a vote when the time comes, and the group will be willing to use a ballot sheet based on
their summary of the issues. The brokers themselves may be participants in the debate; it is
not necessary for them to remain above the fray, as long as they can understand and fairly
represent others' views, and not let their partisan sentiments prevent them from summarizing
the state of the debate accurately.

The actual content of the ballot is usually not controversial. By the time matters reach a vote,
the disagreement has usually boiled down to a few key issues, with recognizable labels and
brief descriptions. Occasionally a developer will object to the form of the ballot itself. Some-
times his concern is legitimate, for example that an important choice was left off or not de-
scribed accurately. But other times a developer may be merely trying to stave off the in-
evitable, perhaps knowing that the vote probably won't go his way. See the section called
“Difficult People” [181] for how to deal with this sort of obstructionism.

Remember to specify the voting method, as there are many different kinds, and people might
make wrong assumptions about which procedure is being used. A good choice in most cases

107

Social and Politi-
cal Infrastructure

is approval voting,6 whereby each voter can vote for as many of the choices on the ballot as
she likes. Approval voting is simple to explain and to count, and comprehensibility is an im-
portant factor when choosing a voting method.

Voting Systems

See https://en.wikipedia.org/wiki/Voting_system for more details about approval vot-
ing and other voting systems, but beware the temptation to geek out on voting sys-
tems. I did, in the course of researching this sidebar, and I've never been the same
since. You can try all sorts of fancy voting methods, for example ones that involve
scoring or preferential ranking of choices — such as score voting, Borda, Condorcet,
instant runoff, and single transferable vote — but a famous result known as "Arrow's
Impossibility Theorem" (https://en.wikipedia.org/wiki/Arrow%27s_impossibility_the-
orem) has already demonstrated that no voting system is perfect (at least among a
certain broad class of voting systems). Try to avoid getting into a long debate about
which system to use, because, of course, you will then find yourself in a debate about
which voting system to use to choose the voting system!

Approval Voting, or maybe some form of Ranked Choice / IRV, is usually fine for the
kinds of ballots an open source project is likely to use to resolve technical or procedur-
al questions.

Conduct votes in public as much as possible.7 There is no need for secrecy or anonymity in
a vote about matters that have been debated publicly anyway. Have each participant post her
votes to the project mailing list, so that any observer can tally and check the results for her-
self, and so that everything is recorded in the archives. If you would like to use specialized
software to conduct votes, various open source applications are available. As of this writing
in 2022, Helios (https://vote.heliosvoting.org/) is one that I know supports approval voting,
and a quick search will turn up plenty of others.

When To Vote
The hardest thing about voting is determining when to do it. In general, taking a vote should
be very rare — a last resort for when all other options have failed. Don't think of voting as a
great way to resolve debates. It isn't. It ends discussion, and thereby ends creative thinking
about the problem. As long as discussion continues, there is the possibility that someone will
come up with a new solution everyone likes. This happens surprisingly often: a lively debate
can produce a new way of looking at the problem, and lead to a proposal that eventually sat-

6Also called multiple approval, multiple preference or multiple preference approval.
7An exception is described in the section called “Adding New Maintainers” [110].

108

https://en.wikipedia.org/wiki/Voting_system
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://en.wikipedia.org/wiki/Arrow%27s_impossibility_theorem
https://vote.heliosvoting.org/

Social and Politi-
cal Infrastructure

isfies everyone. Even when no new proposal arises, it's still usually better to broker a com-
promise than to hold a vote. After a compromise, everyone is a little bit unhappy, whereas af-
ter a vote, some people are unhappy while others are happy. From a political standpoint, the
former situation is preferable: at least each person can feel she extracted a price for her un-
happiness. She may be dissatisfied, but so is everyone else.

Voting's only function is that it finally settles a question so everyone can move on. But it set-
tles by a head count, instead of by rational dialogue leading everyone to the same conclu-
sion. The more experienced people are with open source projects, the less eager I find them
to be to resolve questions by voting. Instead they will try to explore previously unconsidered
solutions, or compromise more severely than they'd originally planned. Various techniques
are available to prevent a premature vote. The most obvious is simply to say "I don't think
we're ready for a vote yet," and explain why not. Another is to ask for an informal (non-bind-
ing) show of hands. If the response clearly tends toward one side or another, this will make
some people suddenly more willing to compromise, obviating the need for a formal vote. But
the most effective way is simply to offer a new solution, or a new viewpoint on an old sug-
gestion, so that people re-engage with the issues instead of merely repeating the same argu-
ments.

In certain rare cases, everyone may agree that all the compromise solutions are worse than
any of the non-compromise ones. When that happens, voting is less objectionable, both be-
cause it is more likely to lead to a superior solution and because people will not be overly
unhappy no matter how it turns out. Even then, the vote should not be rushed. The discus-
sion leading up to a vote is what educates the electorate, so stopping that discussion early can
lower the quality of the result.

Note that this advice to be reluctant to call votes does not apply to routine or process-man-
dated votes. For example, in the section called “Stabilizing a Release” [215], voting is
more of a communications mechanism, a means of registering one's involvement in the
change review process so that everyone can tell how much review a given change has re-
ceived. Another example would be procedural elections, for example choosing the board of
directors for a project organized as a non-profit legal entity.

Who Votes?
Having a voting system raises the question of electorate: who gets to vote? This has the po-
tential to be a sensitive issue, because it forces the project to officially recognize some peo-
ple as being more involved, or as having better judgement, than others.

One solution is to simply take an existing distinction, commit access (see the section called
“Committers” [259]), and attach voting privileges to it. In projects that offer both full and
partial commit access, the question of whether partial committers can vote largely depends

109

Social and Politi-
cal Infrastructure

on the process by which partial commit access is granted. If the project hands it out liberal-
ly, for example as a way of maintaining many third-party contributed tools in the repository,
then it should be made clear that partial commit access is just about committing, not voting.
The reverse implication naturally holds as well: since full committers will have voting priv-
ileges, they must be chosen not only as programmers, but as members of the electorate. If
someone shows disruptive or obstructionist tendencies on the mailing list, the group should
be very cautious about making him a committer, even if the person is technically skilled.

Not All Maintainers Are Coders

For many projects, it works out fine to have the set of committers and the set of voters be ex-
actly the same. But this isn't appropriate for every project. There may be people who are very
invested, and who contribute a lot, through means other than coding. People may provide le-
gal help, or organize events, or manage the bug tracker, or write documentation, or do any
number of other things that are highly valued in the project. They often may have a level of
influence in the community (and familiarity with the community's dynamics) that exceeds
that of many committers.

If valuable members of your community are being left out of important decisions just be-
cause those people happen not to be coders, consider expanding the notion of commit-
ter to something more like maintainer (see also Defining "Committer" and "Commit Ac-
cess" [259]).8 For the rest of this section, I'll use that term. In projects where commit ac-
cess and maintainership are synonymous, then it just means the same thing as "committer",
but in other projects it might mean more than that. The procedures for adding new maintain-
ers should be the same either way; it doesn't matter if they write code or not — what matters
is their good judgement and the trust of their peers in the project.

Adding New Maintainers

The voting system itself should be used to choose new voters, both full and partial. But here
is one of the rare instances where secrecy is appropriate. You can't have votes about poten-
tial new maintainers posted to a public mailing list, because the candidates' feelings and rep-
utations are on the line. Instead, the usual way is that an existing maintainer posts to a private
mailing list consisting only of the other maintainers, proposing that the candidate be invit-
ed to join. The other maintainers speak their minds freely, knowing the discussion is private.
Often there will be no disagreement, and therefore no formal vote is needed. After waiting a
few days to make sure every maintainer has had a chance to respond, the proposer mails the
candidate and makes the offer. If there is disagreement, discussion ensues as for any other
question, possibly resulting in a vote.

8Some projects call this "member", which is also fine. There isn't a set term for it. I prefer "maintainer" because it im-
plies responsibility to the project, rather than belonging to a club.

110

Social and Politi-
cal Infrastructure

For this process to be open and frank, the mere fact that the discussion is taking place at all
should be secret. If the person under consideration knew it was going on, and then were nev-
er offered maintainership, he could conclude that he had lost the vote, and would likely feel
hurt. Of course, if someone explicitly asks to be considered, then there is no choice but to
take up the proposal and explicitly accept or reject him. If the latter, then it should be done
as politely as possible, with a clear explanation: "We liked your patches, but haven't seen
enough of them yet," or "We appreciate all the work you did for the conference, but you
haven't been very active in the project since then, so we don't feel comfortable making you
a maintainer just yet. We hope that this will change over time, though." Remember, what
you're saying could come as a blow, depending on the person's temperament or confidence
level. Try to see it from their point of view as you write the message.

Because adding a new maintainer is more consequential than most other one-time decisions,
some projects have special requirements for the vote. For example, they may require that the
proposal receive at least n positive votes and no negative votes, or that a supermajority vote
in favor. The exact parameters are not important; the main idea is to get the group to be care-
ful about adding new maintainers. Similar, or even stricter, special requirements can apply to
votes to remove a maintainer (see the section called “Revoking Commit Access” [261]),
though hopefully that will never be necessary.

Polls Versus Votes
For certain kinds of votes, it may be useful to expand the electorate. For example, if the de-
velopers simply can't figure out whether a given interface choice matches the way people ac-
tually use the software, one solution is to ask to all the subscribers of the project's mailing
lists to vote. These are really polls rather than votes, but the developers may choose to treat
the result as binding. As with any poll, be sure to make it clear to the participants that there's
a write-in option: if someone thinks of a better option that was not offered in the poll ques-
tions, her response may turn out to be the most important result of the poll.

Vetoes
Some projects allow a special kind of vote known as a veto. A veto is a way for a develop-
er to put a halt to a hasty or ill-considered change, at least long enough for everyone to dis-
cuss it more. Think of a veto as somewhere between a very strong objection and a filibuster.
Its exact meaning varies from one project to another. Some projects make it very difficult to
override a veto; others allow them to be overridden by regular majority vote, but after an en-
forced delay for more discussion. Any veto should be accompanied by a thorough explana-
tion; a veto without such an explanation should be considered invalid on arrival.

With vetoes comes the problem of veto abuse. Sometimes developers are too eager to raise
the stakes of disagreement by casting a veto, when really all that was called for was more

111

Social and Politi-
cal Infrastructure

discussion. You can prevent veto abuse by being very reluctant to use vetoes yourself, and by
gently calling it out when someone else uses her veto too often. If necessary, you can also re-
mind the group that vetoes are binding for only as long as the group agrees they are — after
all, if a clear majority of developers wants X, then X is going to happen one way or another.
Either the vetoing developer will back down, or the group will decide to weaken the meaning
of a veto.

You may see people write "-1" to express a veto. This usage originally comes from the
Apache Software Foundation (which has a highly structured voting and veto process, de-
scribed at https://www.apache.org/foundation/voting.html), but has since spread to many oth-
er projects, albeit not always with exactly the same formal meaning it has at the ASF. Tech-
nically, "-1" does not always indicate a formal veto even according to the Apache standards,
but informally it is usually taken to mean a veto, or at least a very strong objection.

Like votes, vetoes can apply retroactively. It's not okay to object to a veto on the grounds
that the change in question has already been committed, or the action taken (unless it's some-
thing irrevocable, like putting out a press release). On the other hand, a veto that arrives
weeks or months late isn't likely to be taken very seriously, nor should it be.

Writing It All Down
At some point, the number of conventions and agreements floating around in your project
may become so great that you need to record it somewhere. In order to give such a document
legitimacy, make it clear that it is based on mailing list discussions and on agreements al-
ready in effect. As you compose it, link to the relevant threads in the mailing list archives,
and whenever there's a point you're not sure about, ask again. The document should not con-
tain any surprises: remember, it is not the source of the agreements, it is merely a description
of them. Of course, if it is successful, people will start citing it as a source of authority in it-
self, but that just means it reflects the overall will of the group accurately.

Typically, this document lives at the top level of the repository tree, is written in a simple
markup language such as Markdown, and has a name like CONTRIBUTING.md or DEVEL-
OPMENT.md.

112

https://www.apache.org/foundation/voting.html

Social and Politi-
cal Infrastructure

Linking To Emails

When you link to an email thread in the archives, it's a good practice to give not on-
ly the thread's URL, but the subject, sender name, and date of the first message in the
thread (or at least of some message in the thread). The reason is that if the archive
moves — this can happen from time to time, for example because of a change in host-
ing provider — the URL alone will usually not contain enough information to find the
message or thread in its new location.

The same advice could apply to bug tickets too, but in practice bug trackers move
less often than mail archives do, and when a bug tracker moves the project usually
manages to either preserve the ticket numbers or make a mapping between old and
new ticket numbers, so that old references can be resolved with a little extra effort.
For various technical reasons, this is harder to do with emails and especially with
threads, so the better solution is just for references to include enough information to do
a search in the new archive if necessary. See also the section called “Conspicuous Use
of Archives” [187].

This is the document alluded to in the section called “Developer Guidelines” [27]. Naturally,
when the project is very young, you will have to lay down guidelines without the benefit of a
long project history to draw on. But as the development community matures, you can adjust
the language to reflect the way things actually turn out.

Don't try to be comprehensive. No document can capture everything people need to know
about participating in a project. Many of the conventions a project evolves may remain for-
ever unspoken, never mentioned explicitly yet adhered to by all. Other things are simply too
obvious to be mentioned, and would only distract from important but non-obvious materi-
al. For example, there's no point writing guidelines like "Be polite and respectful to others
on the mailing lists, and don't start flame wars," or "Write clean, readable bug-free code." Of
course these things are desirable, but since there's no conceivable universe in which they are
not desirable, they are not worth mentioning. If people are being rude on the mailing list, or
writing buggy code, they're not going to stop just because the project guidelines said to. Such
situations need to be dealt with as they arise, not by blanket admonitions to be good. On the
other hand, if the project has specific guidelines about how to write good code, such as rules
about documenting every API in a certain format, then those guidelines should be written
down as thoroughly as possible.

A good way to determine what to include is to base the document on the questions that new-
comers ask most often, and on the complaints experienced developers make most often. This
doesn't necessarily mean it should turn into a FAQ sheet — it probably needs a more coher-
ent narrative structure than FAQs can offer. But it should follow the same reality-based prin-
ciple of addressing the issues that actually arise, rather than those you anticipate might arise.

113

Social and Politi-
cal Infrastructure

If the project is a benevolent dictatorship, or has officers endowed with special powers (pres-
ident, chair, whatever), then the document is also a good opportunity to codify succession
procedures. Sometimes this can be as simple as naming specific people as replacements in
case the BD suddenly leaves the project for any reason. Generally, if there is a BD, only the
BD can get away with naming a successor. If there are elected officers, then the nomination
and election procedure that was used to choose them in the first place should be described
in the document. If there was no procedure originally, then get consensus on a procedure on
the mailing lists before writing it down in an official place. People can sometimes be touchy
about hierarchical structures, so the subject needs to be approached with sensitivity.

Perhaps the most important thing is to make it clear that the rules can be reconsidered. If the
conventions described in the document start to hamper the project, remind everyone that it
is supposed to be a living reflection of the group's intentions, not a source of frustration and
blockage. If someone makes a habit of inappropriately asking for rules to be reconsidered
every time the rules get in her way, you don't always need to debate it with her — sometimes
silence is the best tactic. If other people agree with the complaints, they'll chime in, and it
will be obvious that something needs to change. If no one else agrees, then the person won't
get much response, and the rules will stay as they are.

Three good examples of project guidelines are the LibreOffice Development guide at https://
wiki.documentfoundation.org/Development, the Subversion Community Guide, at https://
subversion.apache.org/docs/community-guide/, and the Apache Software Foundation gov-
ernance documents, at https://www.apache.org/foundation/how-it-works.html and https://
www.apache.org/foundation/voting.html. The ASF is really a collection of software projects,
legally organized as a nonprofit corporation, so its documents tend to describe governance
procedures more than development conventions. They're still worth reading, though, because
they represent the accumulated experience of a lot of open source projects.

Joining or Creating a Non-Profit Orga-
nization

Successful open source projects sometimes get to a point where they feel the need for some
sort of formal existence as a legal entity — to be able to accept donations (see Chapter 5, Or-
ganizations and Money: Businesses, Non-Profits, and Governments [116] for discussion
of how to handle incoming funding), to purchase and maintain infrastructure for the project's
benefit, to organize conferences and developer meetups, to enforce trademarks, etc.

There may be a few exceptional circumstances where forming a new organization from
scratch would be the right solution, but for most projects it is much better to join an existing
organization. There are umbrella organizations whose purpose is to provide a legal home for
open source projects. Working with multiple projects gives these organizations economies of

114

https://wiki.documentfoundation.org/Development
https://wiki.documentfoundation.org/Development
https://subversion.apache.org/docs/community-guide/
https://subversion.apache.org/docs/community-guide/
https://www.apache.org/foundation/how-it-works.html
https://www.apache.org/foundation/voting.html
https://www.apache.org/foundation/voting.html

Social and Politi-
cal Infrastructure

scale and broad experience — any of them would almost certainly do a better job of provid-
ing services to your project than your project could manage if it started its own organization.

Here are some well-known and reputable umbrella organizations:

• Software Freedom Conservancy — https://sfconservancy.org/9

• Apache Software Foundation — https://apache.org/

• Eclipse Foundation — https://eclipse.org/

• Software in the Public Interest — http://spi-inc.org/

• Linux Foundation — http://collabprojects.linuxfoundation.org/

These are all based in the United States, but there are similar umbrella organizations outside
the U.S. — I just didn't know them well enough to make recommendations. If you're a U.S.
reader, remember that the distinctions the U.S. tax code makes between different types of
non-profit corporations, such as 501(c)(3) tax-exempt organizations vs 501(c)(6) trade asso-
ciations, may not be meaningful to people outside the U.S., and that the tax benefits available
to donors under 501(c)(3) won't apply to non-U.S. donors anyway.

If your project joins or creates a non-profit organization, make clear the separation between
the legal infrastructure and the day-to-day running of the project. The organization is there to
handle things the developers don't want to handle, not to interfere with the things the devel-
opers do want to handle and are already competent to handle. Even if the non-profit becomes
the official owner of the project's copyrights, trademarks, and other assets, that shouldn't
change the way decisions are made about technical questions, project direction, etc. A good
reason to join one of the existing organizations is that they already have experience with this
distinction, and know how to fairly read the collective will of the project even when there is
controversy or strong disagreement. They also serve as a neutral place for resolving disagree-
ments about how to allocate the project's money or other resources. More than one of the or-
ganizations listed above has had to play "project psychotherapist" on occasion, and their abil-
ity to do so should be considered an advantage even by a healthy and smoothly functioning
project.

9I think the Software Freedom Conservancy is a good choice for most projects, which is why I listed it first. But I should
add the disclosure that I served on their Evaluation Committee, a volunteer committee that evaluates projects applying to
become members of the Conservancy, for some time while revising this book for its 2nd edition. The recommendation of
the Conservancy was already in the in-progress text before I joined the committee.

115

https://sfconservancy.org/
https://apache.org/
https://eclipse.org/
http://spi-inc.org/
http://collabprojects.linuxfoundation.org/

Chapter 5. Organizations and
Money: Businesses, Non-
Profits, and Governments

This chapter examines how to use money and organizational capacity constructively in a free
software environment. It also discusses some of the adjustments an organization may need to
make as it gets involved in free software projects.

When an organization makes an investment in open source, people at all levels have to un-
derstand not just how best to structure that investment, but the effects that long-term open
source engagement will have on the organization itself. Open source can be transforma-
tive — at least when done right. Thus, while the material here should be useful for develop-
ers who are paid to work on open source projects, it's really meant for managers and for ex-
ecutives making strategic decisions.

This chapter is not primarily about how to find funding sources for your open source project,
though I hope it will usefully inform that topic. There are many different ways open source
projects are funded1, just as there are many ways all human endeavors are funded. While
open source is incompatible with one particular business model — monopoly-controlled roy-
alty streams based on per-copy sales — it is compatible with all the others, and indeed is bet-
ter suited to some of them than proprietary software is.

The Economics of Open Source
People are still sometimes surprised to learn that most free software is written by paid devel-
opers, not by volunteers. But the economics that drive open source are actually quite straight-
forward: a company needs a particular piece of software to be maintained and developed, and
does not need monopoly control of that software. Indeed, it would often be disadvantageous
to have a monopoly, because then the entire burden of maintenance would fall on that one
company, instead of being shared with others who have the same needs. For example, most
companies have web sites and therefore need a web server, but almost no companies need
exclusive control over the development of their web server, or intend to sell copies of it on
a proprietary basis. The same is true of office software suites, operating system kernels, net-
work connectivity tools, educational programs, etc — just as historically it has also been true
of electric grids, roads, sewer systems, and other goods that everyone needs but no one needs

1See https://en.wikipedia.org/wiki/Business_models_for_open-source_software for an incomplete list.

116

https://en.wikipedia.org/wiki/Business_models_for_open-source_software

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
to own. Just as we expect road workers to be paid, we should expect software developers to
be paid as well.

Even in the early days of free software, when the proportion of truly unpaid volunteers was
probably higher2 than it is now, there were already developers who were paid for their work.
There was also a lot of informal subsidy, as there continues to be today. When a system ad-
ministrator writes a network analysis tool to help her do her job, then posts it online and gets
bug fixes and feature contributions from other system administrators, what's happened is that
an unofficial consortium has been formed. The consortium's funding comes from the sysad-
mins' salaries; its office space and network bandwidth are donated, albeit unknowingly, by
the organizations those people work for. Those organizations also benefit from the invest-
ment, of course, though they may or may not be institutionally aware of it.

Today such efforts are often more formalized. Corporations have become conscious of the
benefits of open source software, and now involve themselves intentionally in its develop-
ment. Developers too have come to expect that really important projects will attract funding
in one way or another. The key question is how the hierarchical command structures of cor-
porations and the polyarchical, non-coercive communities of free software projects can work
productively with each other — and how they can agree on what "productively" means.

Financial backing is generally welcomed by open source development communities. Having
paid developers means that bug reports are more likely to be listened to, that needed work is
more likely to get done, and that the project will be less vulnerable to the Forces of Chaos
(e.g., a key developer suddenly losing interest) that lurk at the edges of every collaborative
endeavor. One important dynamic is that credibility is contagious, to a point. When a large
company visibly backs an open source project, people assume the project will receive ade-
quate support in its early stages and have the chance to succeed or fail on its long-term mer-
its; other participants' resultant willingness to invest in the project can then make this a self-
fulfilling prophecy.

However, money can also bring a perception of control. If not handled carefully, this can
divide a project into in-group and out-group developers. If developers who aren't official-
ly paid to work on the project get the impression that design decisions or feature additions
are simply available to the highest bidder, they'll leave for a project that seems more like a
meritocracy and less like unpaid labor for someone else's benefit. They may never complain
overtly on the mailing lists. Instead, there will simply be less and less noise from sources
outside the main funded group, as the "out" developers gradually stop trying to be taken seri-
ously. The buzz of small-scale contribution may continue, in the form of bug reports and oc-
casional small fixes. But there will be fewer and fewer large code contributions from unex-
pected sources, fewer unexpected opinions offered in design discussions, fewer bug reports

2This is an educated guess — I'm not aware of any rigorous research into the question. I do know from personal experi-
ence and anecdotal evidence that at least some paid open source work was happening early on.

117

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
that reveal unexpected new uses of the software, and so on. People sense what's expected of
them, and live up (or down) to those expectations.

So money needs to be used carefully, and without communicating an intent to control. But it
can still buy influence. The trick is that it doesn't buy influence directly. Instead, it buys de-
velopment credibility, which is convertible to influence through the project's decision-mak-
ing processes.3

In a straightforward commercial transaction, you trade money for what you want, because
your counterparty has enough control to guarantee the delivery of the goods. If you need a
feature added, you sign a contract, pay for it, and (if all goes well) the work gets done and
the feature eventually lands in the product.

In an open source project, the process is more complex. You may sign a contract with some
developers, but they'd be fooling themselves — and you — if they guaranteed that the work
you paid for would be accepted by the development community simply because you paid for
it. The work can only be accepted based on its own merits and on how it fits into the commu-
nity's vision for the software (see the section called “Contracting” [129] and the section
called “Hiring Open Source Developers” [157]). You may have some say in that vision,
but you won't be the only voice.

But although money can't purchase influence directly in an open source project, it can pur-
chase things that lead to influence. The most obvious example is programmers. If you hire
good programmers, and they stick around long enough to get experience with the software
and credibility in the community, then they can influence the project by the same means as
any other member. They will have a vote, or if there are many of them, they will have a vot-
ing block.4 If they are respected in the project, they will have influence beyond just their
votes. There is no need for paid developers to disguise their motives, either. After all, every-
one who wants a change made to the software wants it for a reason. Your company's reasons
are no less legitimate than anyone else's. It's just that the weight given to your company's
goals will be determined by its representatives' status in the project, rather than by your com-
pany's size, budget, or business plan.5

3The report Open Source Archetypes: A Framework For Purposeful Open Source (https://opentechstrategies.com/arche-
types), as mentioned earlier in Chapter 1, Introduction [1], may be worth a look if you're trying to understand the ways
in which a project should be subject to influence and by whom.
4Even though actual votes may be rare, as noted in the section called “Consensus-based Democracy” [105], the possibili-
ty of a vote has great implicit power, so membership in the electorate is still important even if no vote is ever held.
5When companies need to guarantee that certain features and bug fixes land in a specified amount of time, they accom-
plish this by keeping their own copy of the project (ideally also public and under open source license), and merging it
from time to time with the separate upstream project that has its own independent governance. Google's Android oper-
ating system is a classic example: Google maintains its own copy (or copies) of Android, which it governs as it pleases,
and from time to time merges changes to or from the main Android Open Source Project (https://en.wikipedia.org/wi-
ki/Android_%28operating_system%29#Open-source_community). Essentially, Google is on a very long copy-modi-

118

https://opentechstrategies.com/archetypes
https://opentechstrategies.com/archetypes
https://en.wikipedia.org/wiki/Android_%28operating_system%29#Open-source_community
https://en.wikipedia.org/wiki/Android_%28operating_system%29#Open-source_community

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

Goals of Corporate Involvement
There are many different reasons open source projects get corporate support. The list below
is just a high-level survey, and the items in it aren't mutually exclusive — often a project's fi-
nancial backing will result from several, or even all, of these motivations:

Share the burden

Separate organizations with related needs often find themselves duplicating effort, either
by redundantly writing similar code in-house or by purchasing similar products from
proprietary vendors. As the inefficiency becomes apparent to the different parties, they
may pool their resources — often gradually, without at first realizing the overall trajec-
tory of the process — and create or join an open source project tailored to their needs.
The advantages of doing so are obvious: the costs of development are divided, but the
benefits accrue to all. Although this scenario might seem most intuitive for nonprofits, in
practice it happens often among for-profit competitors too.

Ensure maintenance of product infrastructure

When a company sells services which depend on, or are made more attractive by, partic-
ular open source programs, it is naturally in that company's interests to ensure those pro-
grams are actively maintained.

Establish a standard

Often a corporation has strategic reasons to establish a technical standard. Releasing an
open source implementation of that standard, and shepherding the software into wide-
spread use, is usually the most effective way to get buy-in from others for the standard.

Create an ecosystem

For investors who like to think big, the right open source effort can create a new ecosys-
tem — one in which those investors are more likely to flourish.

Support hardware sales

The value of computers and computer components is directly related to the amount of
software available for them. Hardware vendors — not just whole-machine vendors, but
also makers of peripheral devices and microchips — have found that having high-quality
free software to run on their hardware is important to customers.

fy-merge loop with respect to main the open source project, and vice versa. It is in neither side's interests to permanently
diverge from the other.

119

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Undermine a competitor

Sometimes companies support a particular open source project as a means of undermin-
ing a competitor's product, which may or may not be open source itself. Eating away at
a competitor's market share is usually not the sole reason for getting involved with an
open source project, but it can be a factor.

Marketing

Having your company associated with a popular open source application can be good
brand management, not just in the eyes of customers but in the eyes of potential employ-
ees.

Proprietary relicensing

Proprietary relicensing is the practice of offering software under a proprietary license
for customers who want to resell it as part of a proprietary application of their own, and
simultaneously under a free license for those willing to use it under open source terms.
If the open source developer community is active, the software gets the benefits of wide-
area debugging and development, yet the company still gets a royalty stream to support
some full-time programmers.

Proprietary relicensing is controversial because it is not a open source" model, but
rather yokes funding for open source development to a monopoly-based revenue stream.
Whether this is a problem for you depends on where you fall on the "open source is just
a way of software development" to "open source is a way of life" spectrum. The pres-
ence of revenue from a proprietary version does not necessarily mean that the free soft-
ware version is worse off, and some very well-known and widely-used free software has
had corresponding proprietary versions (MySQL6 is probably the most famous exam-
ple). However, some developers dislike the thought that their contributions may end up
in the proprietary version. Also, the mere presence of the proprietary version suggests
the possibility that some of the best salaried developers' attention is going to the propri-
etary code, not the open source code. This tends to undermine other developers' faith in
the open source project, which in turn makes it difficult to develop a truly flourishing
ecosystem around the open source version.

None of is meant to persuade you not to do proprietary relicensing. You should just be
aware that this strategy is unlike the other business approaches I've listed here, that it re-
quires more care and sophistication to manage successfully, and that it is usually incom-
patible with the presence of a committed and involved ecosystem of developers from
outside your organization, particularly developers who might have their own commer-
cial motivations.

6https://en.wikipedia.org/wiki/MySQL

120

https://en.wikipedia.org/wiki/MySQL

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
A funder's business model is not the only factor in how that funder relates to an open source
community. The historical relationship between the two also matters: did the company start
the project, or did it join an existing development effort? In both cases, the funder will have
to earn credibility, but, not surprisingly, there's a bit more earning to be done in the latter
case. The organization needs to have clear goals with respect to the project. Is it trying to
keep a position of leadership, or simply trying to be one voice in the community, to guide
but not necessarily govern the project's direction? Or maybe it just wants to have a couple of
committers around, able to fix customers' bugs and get the changes into the public distribu-
tion without any fuss?

Keep the question of goals in mind as you read the guidelines that follow. They are meant to
apply to any sort of organizational involvement in a free software project, but every project
is a human environment, and therefore no two are exactly alike. To some degree, you will al-
ways have to play by ear, but following the principles in this chapter will increase the likeli-
hood of things turning out the way you want.

Governments and Open Source
Since the first edition of this book came out in 2005, I've worked with various U.S. govern-
ment agencies (federal, state, and municipal) to help them develop and participate in open
source software. I've also been lucky enough to observe, and in a few cases work with, some
government agencies outside the U.S. These experiences have convinced me of one thing:
government is different. If you work at a government agency and the material in this book
so far has made you shake your head and think "Sure, but it'll never work here", you have
my sympathy — I know what you mean. Governments differ from individuals and from pri-
vate-sector organizations in some fundamental ways:

• Governments often aren't trying to retain technical expertise in-house. That's what contrac-
tors are for, after all.

• Governments have labyrinthine and in certain ways inflexible procurement and employ-
ment policies. These policies can make it difficult for a government agency to be nimbly
responsive in an open source development community.

• Government agencies tend to be unusually risk-averse. Somewhere at the top there's an
elected official who, reasonably, sees an open source project as just another exposed sur-
face for opponents to attack. After all, when development happens in public, the inevitable
false starts and wrong turns are also public; if development were internal, no one else
would know about it when those things happen.

• Government officials hunger for well-timed and well-controlled publicity events, and
this need can sometimes be in tension with overall project health. The need for good pub-

121

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
licity is, in a way, the complement of being risk-averse. Elected officials and those who
work for them understand that most people aren't paying much attention most of the time.
Therefore, government workers want to make sure that in the few moments when people
are paying attention they see something good. This is understandable, but it can cause cer-
tain actions to be delayed — or, in some cases, done too soon — based on external public-
ity implications rather than on what's best for the project technically and socially.

There are good reasons for all of these things; they've been true for decades or even cen-
turies, and they're not going to change. So if you're a government agency and you want to
start a successful open source project, certain adjustments will be necessary to compensate
for the structural idiosyncrasies mentioned above. Much of that advice is also applicable to
non-governmental organizations, and is already present elsewhere in this chapter, so below
I'll simply list the sections that I think are most important for a government agency:

• Update Your RFI, RFP and Contract Language [133]

• Open Source Quality Assurance (OSQA) [134]

• Don't Surprise Your Lawyers [137]

• Open Source and Freedom from Vendor Lock-In [144]

• Dispel Myths Within Your Organization [148]

• Don't Let Publicity Events Drive Project Schedule [153]

• The Key Role of Middle Management [154]

In addition to the above sections in this book, there are many excellent online resources
about open source in government. I won't even try to include a complete list, as there is too
much and it changes too quickly. Here are a few sites that are likely to remain good starting
points for some time to come, especially for government agencies in the United States and in
countries with procurement and civil service systems similar to those of the U.S.

• https://18f.gsa.gov/ is a digital services agency within the United States federal govern-
ment, created in 2014 to bring modern software development practices to government
work. 18F serves as a technology consultancy to other agencies, and builds its deliverables
out in the open as open source software. Along the way, 18F has generated useful guide-
lines and observations that anyone trying to run an open source software project within
government can benefit from.

• http://www.dwheeler.com/, the home site of Dr. David A. Wheeler, is a fantastic trove that
includes, among many other open-source-related things, tons of information about how to
use U.S. government procurement regulations to support open source development.

122

https://18f.gsa.gov/
http://www.dwheeler.com/

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
• http://ben.balter.com/2015/11/23/why-open-source/ is a terrific post to mine for argu-

ments, if you are advocating for open source development within a government agency.
Many of Ben Balter's other writings are worth looking at too.

Finally, there is one issue in particular that I have encountered over and over again in gov-
ernment-initiated open source projects. It is so common, and so potentially damaging to a
project, that I have given it its own subsection below.

Being Open Source From Day One is Especial-
ly Important for Government Projects

In the section called “Be Open From Day One” [43], I explained why it's best for an open
source project to be run in the open from the very beginning. That advice, particularly the
section called “Waiting Just Creates an Exposure Event” [45], is especially applicable to
government code.

Government projects have greater potential to be harmed by a needless exposure event than
private-sector projects have. Elected officials and those who work for them are understand-
ably sensitive to negative public comments. Thus even for the most conscientious team, a
worrying cloud of uncertainty will hover over everything by the time they're ready to open
up hitherto closed code. How can they ever know they've got it all cleaned up? One can nev-
er be totally sure some hawk-eyed hacker out there won't spot something embarrassing after
the publication. This worry is an energy drain: it causes the team to spend time chasing down
ghosts, and at the same time can cause them to unconsciously avoid steps that might risk re-
vealing real problems.

This concern doesn't only apply to government software, of course. But in the private sec-
tor, businesses sometimes have competitive reasons to stay behind the curtain until their first
release, even if they intend for the project to be open source in the long run. Government
projects should not have that motivation for starting out closed, at least in theory, and they
have even more to lose.

Hire for the Long Term
If you're managing programmers on an open source project, keep them there long enough
that they acquire both technical and political expertise — a couple of years, at a minimum.
Of course, no project, whether open or closed-source, benefits from swapping programmers
in and out too often. The need for a newcomer to learn the ropes each time would be a deter-
rent in any environment. But the penalty is even stronger in open source projects: outgoing
developers take with them not only their knowledge of the code, but also their status in the
community and the human relationships they have made there.

123

http://ben.balter.com/2015/11/23/why-open-source/

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
The credibility a developer has accumulated cannot be transferred. To pick the most obvi-
ous example, an incoming developer can't inherit commit access from an outgoing one (see
the section called “Money Can't Buy You Love” [127] later in this chapter), so if the new
developer doesn't already have commit access, he will have to submit patches until he does.
But commit access is only the most easily quantifiable manifestation of lost influence. A
long-time developer also knows all the old arguments that have been hashed and rehashed on
the discussion lists. A new developer, having no memory of those conversations, may try to
raise the topics again, leading to a loss of credibility for your organization; the others might
wonder "Can't they remember anything?" A new developer will also have no political feel
for the project's personalities, and will not be able to influence development directions as
quickly or as smoothly as one who's been around a long time.

Train newcomers through a program of supervised engagement. The new developer should
be in direct contact with the public development community from the very first day, starting
off with bug fixes and cleanup tasks, so he can learn the codebase and acquire a reputation in
the community, yet not spark any long and involved design discussions. All the while, one
or more experienced developers should be available for questioning, and should be reading
every post the newcomer makes to the project forums, even if the posts are in threads that the
experienced developers normally wouldn't pay attention to. This will help the group spot po-
tential rocks before the newcomer runs aground. Private, behind-the-scenes encouragement
and pointers can also help a lot, especially if the newcomer is not accustomed to intense peer
review of his code.

Case study

At CollabNet, when we hired a new developer to work on Subversion, we would sit down
together and pick some open bugs for the new person to cut his teeth on. We'd discuss the
technical outlines of the solutions, and then assign at least one experienced developer to
(publicly) review the patches that the new developer would (also publicly) post. We typical-
ly didn't even look at the patch before the main development list saw it, although we could
if there were some reason to. The important thing is that the new developer goes through
the process of public review, learning the codebase while simultaneously becoming accus-
tomed to receiving critiques from complete strangers. But we also tried to coordinate the tim-
ing so that our own review came immediately after the posting of the patch. That way the
first review the list sees is ours, which can help set the tone for the others' reviews. It also
contributes to the idea that this new person is to be taken seriously: if others see that we're
putting in the time to give detailed reviews, with thorough explanations and references into
the archives where appropriate, they'll appreciate that a form of training is going on, and that
it probably signifies a long-term investment. This can make them more positively disposed
toward the new developer, to the degree of spending a little extra time answering questions
and reviewing patches themselves.

124

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

Appear as Many, Not as One
Your developers should strive to appear in the project's public forums as individual partici-
pants, rather than as a monolithic corporate presence. This is not because there is some nega-
tive connotation inherent in monolithic corporate presences (well, perhaps there is, but that's
not what this book is about). Rather, it's because individuals are the only sort of entity that
open source projects are structurally equipped to deal with. An individual contributor can
have discussions, submit patches, acquire credibility, vote, and so forth. A company cannot.

Furthermore, by behaving in a decentralized manner, you avoid stimulating centralization
of opposition. Let your developers disagree with each other on the mailing lists. Encourage
them to review each other's code as often, and as publicly, as they would anyone else's. Dis-
courage them from always voting as a bloc, because if they do, others may start to feel that,
just on general principles, there should be an organized effort to keep them in check.

There's a difference between actually being decentralized and simply striving to appear that
way. Under certain circumstances, having your developers behave in concert can be quite
useful, and they should be prepared to coordinate behind the scenes when necessary. For ex-
ample, when making a proposal, having several people chime in with agreement early on
can help it along, by giving the impression of a growing consensus. Others will feel that the
proposal has momentum, and that if they were to object, they'd be stopping that momentum.
Thus, people will object only if they have a good reason to do so. There's nothing wrong
with orchestrating agreement like this, as long as objections are still taken seriously. The
public manifestations of a private agreement are no less sincere for having been coordinated
beforehand, and are not harmful as long as they are not used to prejudicially snuff out oppos-
ing arguments. Their purpose is merely to inhibit the sort of people who like to object just to
stay in shape; see the section called “The Smaller the Topic, the Longer the Debate” [177]
for more about them.

Be Open About Your Motivations
Be as open about your organization's goals as you can without compromising business se-
crets. If you want the project to acquire a certain feature because, say, your customers have
been clamoring for it, just say so outright on the mailing lists. If the customers wish to re-
main anonymous, as is sometimes the case, then at least ask them if they can be used as un-
named examples. The more the public development community knows about why you want
what you want, the more comfortable they'll be with whatever you're proposing.

This runs counter to the instinct — so easy to acquire, so hard to shake off — that knowledge
is power, and that the more others know about your goals, the more control they have over
you. But that instinct would be wrong here. By publicly advocating the feature (or bugfix,

125

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
or whatever it is), you have already laid your cards on the table. The only question now is
whether you will succeed in guiding the community to share your goal. If you merely state
that you want it, but can't provide concrete examples of why, your argument is weak, and
people will start to suspect a hidden agenda. But if you give just a few real-world scenarios
showing why the proposed feature is useful, that can have a dramatic effect on the debate.

To see why this is so, consider the alternative. Too frequently, debates about new features or
new directions are long and tiresome. The arguments people advance often reduce to "I per-
sonally want X," or the ever-popular "In my years of experience as a software designer, X is
extremely important to users" or "...is a useless frill that will please no one." The absence of
real-world usage data neither shortens nor tempers such debates, but instead allows them to
drift farther and farther from any mooring in actual user experience. Without some counter-
vailing force, the end result is likely to be determined by whoever was the most articulate, or
the most persistent, or the most senior.

As an organization with plentiful customer data available, you have the opportunity to pro-
vide just such a countervailing force. You can be a conduit for information that might other-
wise have no means of reaching the development community. The fact that the information
supports your desires is nothing to be embarrassed about. Most developers don't individual-
ly have very broad experience with how the software they write is used. Each developer uses
the software in her own idiosyncratic way; as far as other usage patterns go, she's relying on
intuition and guesswork, and deep down, she knows this. By providing credible data about
a significant number of users, you are automatically improving the quality of debate in the
public development community. As long as you present it right they will welcome it enthusi-
astically, and it will propel things in the direction you want to go.

The key, of course, is presenting it right. It will never do to insist that simply because you
deal with a large number of users, and because they need (or think they need) a given fea-
ture, therefore your solution ought to be implemented. Instead, you should focus your initial
posts on the problem, rather than on one particular solution. Describe in great detail the expe-
riences your customers are encountering, offer as much analysis as you have available, and
as many reasonable solutions as you can think of. When people start speculating about the
effectiveness of various solutions, you can continue to draw on your data to support or refute
what they say. You may have one particular solution in mind all along, but don't single it out
for special consideration at first. This is not deception, it is simply standard "honest broker"
behavior. After all, your true goal is to solve the problem; a solution is merely a means to
that end. If the solution you prefer really is superior, other developers will recognize that on
their own eventually — and then they will get behind it of their own free will, which is much
better than you browbeating them into implementing it. There is also the possibility that they
will think of a better solution.

This is not to say that you can't ever come out in favor of a specific solution. But you must
have the patience to see the analysis you've already done internally repeated on the public

126

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
development lists. Don't post saying "Yes, we've been over all that here, but it doesn't work
for reasons A, B, and C. When you get right down to it, the only way to solve this is Q." The
problem is not so much that it sounds arrogant as that it gives the impression that you have
already devoted some unknown (but, people will presume, large) amount of analytical re-
sources to the problem, behind closed doors. It makes it seem as though efforts have been
going on, and perhaps decisions made, that the public is not privy to — and that is a recipe
for resentment.

Naturally, you know how much effort you've devoted to the problem internally, and that
knowledge is, in a way, a disadvantage. It puts your developers in a slightly different men-
tal space than everyone else on the mailing lists, reducing their ability to see things from the
point of view of those who haven't yet thought about the problem as much. The earlier you
can get everyone else thinking about things in the same terms as you do, the smaller this dis-
tancing effect will be. This logic applies not only to particular technical discussions, but to
the broader mandate of making your goals as clear as you can. The unknown is always more
destabilizing than the known. If people understand why you want what you want, they'll feel
comfortable talking to you even when they disagree. If they can't figure out what makes you
tick, they'll assume the worst, at least some of the time.

You won't be able to publicize everything, of course, and people won't expect you to. All or-
ganizations have secrets; perhaps for-profits have more of them, but nonprofits have them
too. If you must advocate a certain course, but can't reveal everything about why, then sim-
ply offer the best arguments you can under that handicap, and accept the fact that you may
not have as much influence as you want in the discussion. This is one of the compromises
you make in order to have a development community not on your payroll.

Money Can't Buy You Love
If you're a paid developer on a project, then set guidelines early on about what the money can
and cannot buy. This does not mean you need to post twice a day to the mailing lists reiter-
ating your noble and incorruptible nature. It merely means that you should be on the lookout
for opportunities to defuse the tensions that could be created by money. You don't need to
start out assuming that the tensions are there; you do need to demonstrate an awareness that
they have the potential to arise.

A perfect example of this came up early in the Subversion project. Subversion was started in
2000 by CollabNet (http://www.collab.net/), which was the project's primary funder and paid
the salaries of several developers (disclosure: including myself). Soon after the project be-
gan, we hired another developer, Mike Pilato, to join the effort. By then, coding had already
started. Although Subversion was still very much in its early stages, it already had a develop-
ment community with a set of basic ground rules.

127

http://www.collab.net/

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Mike's arrival raised an interesting question. Subversion already had a policy about how a
new developer gets commit access. First, she submits some patches to the development mail-
ing list. After enough patches have gone by for the other committers to see that the new con-
tributor knows what she's doing, someone proposes that she just commit directly (that pro-
posal is private, as described in the section called “Committers” [259]). Assuming the
committers agree, one of them mails the new developer and offers her direct commit access
to the project's repository.

CollabNet had hired Mike specifically to work on Subversion. Among those who already
knew him, there was no doubt about his coding skills or his readiness to work on the project.
Furthermore, the non-CollabNet developers had a very good relationship with the CollabNet
employees, and most likely would not have objected if we'd just given Mike commit access
the day he was hired. But we knew we'd be setting a precedent. If we granted Mike commit
access by fiat, we'd be saying that CollabNet had the right to ignore project guidelines, sim-
ply because it was the primary funder. While the damage from this would not necessarily be
immediately apparent, it would gradually result in the non-salaried developers feeling disen-
franchised. Other people have to earn their commit access — CollabNet just buys it.

So Mike agreed to start out his employment at CollabNet like any other new developer, with-
out commit access. He sent patches to the public mailing list, where they could be, and were,
reviewed by everyone. We also said on the list that we were doing things this way deliberate-
ly, so there could be no missing the point. After a couple of weeks of solid activity by Mike,
someone (I can't remember if it was a CollabNet developer or not) proposed him for commit
access, and he was accepted, as we knew he would be.

That kind of consistency gets you a credibility that money could never buy. And credibility
is a valuable currency to have in technical discussions: it's immunization against having one's
motives questioned. In the heat of argument, people will sometimes look for non-technical
ways to win the battle. The project's primary funder, because of its deep involvement and ob-
vious concern over the directions the project takes, presents a wider target than most. By be-
ing scrupulous to observe all project guidelines right from the start, the funder makes itself
the same size as everyone else.7

The need for the funders to play by the same rules as everyone else means that the Benevo-
lent Dictatorship governance model (see the section called “Benevolent Dictators” [103]) is
slightly harder to pull off in the presence of funding, particularly if the benevolent dictator
works for the primary funder. Since a dictatorship has few rules, it is hard for the funder to
prove that it's abiding by community standards, even when it is. It's certainly not impossible;

7See also Danese Cooper's blog post, preserved in the Internet Archive's Wayback Machine at https://we-
b.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916, for a similar story about
commit access. Cooper was then Sun Microsystem's "Open Source Diva" — I believe that was her official title — and
in the blog entry, she describes how the Tomcat development community got Sun to hold its own developers to the same
commit-access standards as the non-Sun developers.

128

https://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916
https://web.archive.org/web/20050227033105/http://blogs.sun.com/roller/page/DaneseCooper/20040916

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
it just requires a project leader who is able to see things from the point of view of the outside
developers as well as that of the funder, and act accordingly. Even then, it's probably a good
idea to have a proposal for non-dictatorial governance sitting in your back pocket, ready to
be brought out if there start to be indications of widespread dissatisfaction in the community.

Contracting
Contracted work needs to be handled carefully in free software projects. Ideally, if you hire
a contractor you want her work to be accepted by the community and folded into the public
distribution. In theory, it wouldn't matter who the contractor is, as long as her work is good
and meets the project's guidelines. Theory and practice can sometimes match, too: a com-
plete stranger who shows up with a good patch will generally be able to get it into the soft-
ware. The trouble is, it's very hard to produce an acceptable patch for a non-trivial enhance-
ment or new feature as a complete stranger. One must first discuss the changes with the rest
of the project, and even for those who are very familiar with the project the duration of that
discussion cannot be precisely predicted — for those new to the project, the margin of error
will only be higher. If the contractor is paid by the hour, you may end up paying more than
you expected; if she is paid a flat sum, she may end up doing more work than she can afford.

There are various ways to cope with this. You can try to make an educated guess about the
length of the discussion process, based on whatever past experience you have with that com-
munity, add in some padding for error, and base the contract on that. It also helps to divide
the problem into as many small, independent chunks as possible, to increase the predictabili-
ty of each chunk.

Another standard technique is to contract for delivery of a patch that meets the formal up-
stream guidelines and for a tightly budgeted "best effort" at getting the patch integrated in-
to the upstream project treat. The contract itself can never require that the patch be accept-
ed by the upstream project, because that would involve selling something that's not for sale.
(What if the rest of the project unexpectedly decides not to support the feature?) However,
the contract can require a bona fide effort to get the change accepted by the community, and
that it be committed to the repository if the community agrees with it. For example, if the
project has written standards (e.g., about coding conventions, documentation, writing regres-
sion tests, submitting patches, etc), the contract can reference those standards and specify
that the contracted work must meet them. In practice, this usually works out the way every-
one hopes.

Hiring From Within the Community
One tactic for successful contracting is to hire one of the project's developers — preferably
a committer — as the contractor. This may seem like a form of purchasing influence, and,
well, it is. But it's not as corrupt as it might seem. A developer's influence in the project

129

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
is due mainly to the quality of her code and to her interactions with other developers. The
fact that she has a contract to get certain things done doesn't raise her status in any way, and
doesn't lower it either, though it may make people scrutinize her more carefully. Most devel-
opers would not risk their long-term position in the project by backing an inappropriate or
widely disliked new feature. In fact, part of what you get, or should get, when you hire such
a contractor is advice about what sorts of changes are likely to be accepted by the communi-
ty. You also get a slight shift in the project's priorities. Because prioritization is just a mat-
ter of who has time to work on what, when you pay for someone's time, you cause their work
to move up in the priority queue a bit. This is a well-understood fact of life among experi-
enced open source developers, and at least some of them will devote attention to the contrac-
tor's work simply because it looks like it's going to get done, so they want to help it get done
right. Perhaps they won't write any of the code, but they'll still discuss the design and review
the code, both of which can be very useful. For all these reasons, the contractor is best drawn
from the ranks of those already involved with the project.

(See also the section called “Hiring Open Source Developers” [157] for the related topic
of hiring open source developers as employees.)

Hiring From Outside The Community
If you have a long-term goal of increasing the project's stability and longevity, then the op-
posite tactic from that described above may be called for: you might want to deliberately
hire a person or firm who is new to the project. While it may take them some time to find
their way in the code and in the development community, once the contract is done they
will now be invested in the project and may continue to participate, and even to develop
new business based on the project. the section called “Foster Pools of Expertise in Multiple
Places” [152] discusses this strategy in more depth.

Contracting and Transparency
Both techniques described above raise a couple of questions: Should contracts ever be se-
cret? And when they're not secret, should you worry about creating tensions in the communi-
ty by the fact that you've contracted with some developers and not others?

In general, it's best to be open about contracts when you can. Otherwise, the contractor's be-
havior may seem strange to others in the community — perhaps she's suddenly giving inex-
plicably high priority to features she's never shown interest in the past. When people ask her
why she wants them now, how can she answer convincingly if she can't talk about the fact
that she's been contracted to write them?

At the same time, neither you nor the contractor should act as though others should treat your
arrangement as a big deal. Sometimes I've seen contractors waltz onto a development list

130

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
with the attitude that their posts should be taken more seriously simply because they're be-
ing paid. That kind of attitude signals to the rest of the project that the contractor regards the
fact of the contract — as opposed to the code resulting from the contract — to be the impor-
tant thing. But from the other developers' point of view, only the code matters. At all times,
the focus of attention should be kept on technical issues, not on the details of who is paying
whom. For example, one of the developers in the Subversion community handles contracting
in a particularly graceful way. While discussing his code changes in chat, he'll mention as an
aside (often in a private remark, or privmsg, to one of the other committers) that he's being
paid for his work on this particular bug or feature. But he also consistently gives the impres-
sion that he'd want to be working on that change anyway, and that he's happy the money is
making it possible for him to do that. He may or may not reveal his customer's identity, but
in any case he doesn't dwell on the contract. His remarks about it are just an ornament to an
otherwise technical discussion about how to get something done.

That example shows another reason why it's good to be open about contracts. There may
be multiple organizations sponsoring contracts on a given open source project, and if each
knows what the others are trying to do, they may be able to pool their resources. In the above
case, the project's largest funder (CollabNet) was not involved with these piecework con-
tracts, but knowing that someone else was sponsoring certain bug fixes allowed CollabNet to
redirect its resources to other bugs, resulting in greater efficiency for the project as a whole.

Will other developers resent that some are paid for working on the project? In general, no,
particularly when those who are paid are established, well-respected members of the commu-
nity anyway. No one expects contract work to be distributed equally among all the commit-
ters. People understand the importance of long-term relationships: the uncertainties involved
in contracting are such that once you find someone you can work reliably with, you would
be reluctant to switch to a different person just for the sake of evenhandedness. Think of it
this way: the first time you hire, there will be no complaints, because clearly you had to pick
someone — it's not your fault you can't hire everyone. Later, when you hire the same person
a second time, that's just common sense: you already know her, the last time was successful,
so why take unnecessary risks? Thus, it's perfectly natural to have a few go-to people in the
community, instead of spreading the work around evenly.

Review and Acceptance of Changes

The project's community will always be important to the long-term success of contract work.
Their involvement in the design and review process for sizeable changes cannot be an after-
thought; It must be considered part of the work, and fully embraced by the contractor. Don't
think of community scrutiny as an obstacle to be overcome — think of it as a free design
board and QA department. It is a benefit to be aggressively pursued, rather than an obstacle
to be overcome.

131

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

Case Study: the CVS Password-Authentication Protocol

In 1995, I was one half of a partnership that provided support and enhancements for CVS
(the Concurrent Versions System; see http://nongnu.org/cvs). My partner Jim Blandy and
I were, informally, the maintainers of CVS by that point. But we'd never thought carefully
about how we ought to relate to the existing mostly part-time and volunteer CVS develop-
ment community. We just assumed that they'd send in patches, and we'd apply them, and that
was pretty much how it worked.

Back then, networked CVS could be done only over a remote login program (in those days
rsh rather than ssh). Using the same account for CVS access as for system (shell) access
was an obvious security risk, and many organizations were put off by it. A major investment
bank hired us to add a new authentication mechanism, so they could safely use networked
CVS with their remote offices.

Jim and I took the contract and sat down to design the new authentication system. What we
came up with was pretty simple (the United States had export controls on cryptographic code
at the time, so the customer understood that we couldn't implement strong authentication),
but as we were not experienced in designing such protocols, we still made a few gaffes that
would have been obvious to an expert. These mistakes would easily have been caught had
we taken the time to write up a proposal and run it by the other developers for review. But
we never did so, because it didn't occur to us to think of the development list as a resource to
be used to improve our contracted work. We knew that people were probably going to accept
whatever we committed, and — because we didn't know what we didn't know — we didn't
bother to do the work in a visible way, e.g., posting patches frequently, making small, easi-
ly digestible commits to a special branch, etc. The resulting authentication protocol was not
very good, and of course, once it became established, it was difficult to improve, because of
compatibility concerns.

The root of the problem was not lack of experience; we could easily have learned what we
needed to know. The problem was our attitude toward the rest of the development communi-
ty. We regarded acceptance of the changes as a hurdle to get over, rather than as a process by
which the quality of the changes could be improved. Since we were confident that what we
did would be accepted (as it was), we made little effort to get others involved.

Obviously, when you're choosing a contractor, you want someone with the right techni-
cal skills and experience for the job. But it's also important to choose someone with a track
record of constructive interaction with the other developers in the community. That way
you're getting more than just a single person; you're getting an agent who will be able to
draw on a network of expertise to make sure the work is done in a robust and maintainable
way.

132

http://nongnu.org/cvs

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

Update Your RFI, RFP and Contract Language
If you're hiring outside contractors to create software for you, the language you put in your
Requests For Information (RFIs), Requests For Proposals (RFPs), and contracts becomes
crucially important.

There is one key thing you must understand at the outset: the decision makers at most large-
scale software development vendors don't really want their work to be open source. (The
programming staff may feel differently, of course, but the path to the executive suite is usual-
ly smoother for those with an instinct for monopoly.) Instead, the vendors would prefer that
a customer hire them to produce bespoke software that, under the hood, shares many com-
ponents with the other bespoke software they're producing for other customers.8 That way
the vendor can sell mostly the same product at full price many times. This is especially true
of vendors to government agencies, because the needs of government agencies are so simi-
lar, and because jurisdictional boundaries create an artificial multiplicity of customers who
all have pretty much the same needs. Only minor customizations may be needed for each in-
stance, but the different customers will pay full price each time.

As a customer, then, your starting point for a successful large-scale open source project is
to set clear, explicit requirements about open source development from the beginning. From
the RFI or RFP stage, all the way through the contract and into delivery and maintenance,
you must require behaviors and deliverables that will result in a truly open source produc-
t — meaning, among other things, a product that has the potential to be supported and cus-
tomized by vendors other than the one who originally developed it. The most important of
those requirements are:

• Design and development must be done in the open from the very start of the project (see
the section called “Be Open From Day One” [43]

• The code shall be explicitly licensed for open source distribution, from the start of devel-
opment through delivery and deployment.

• If the same vendor is both writing the software and deploying the production instances, re-
quire that deployed code must match the open source code. Don't let proprietary tweak-
s — and thus vendor lock-in — slip in via the back door through deployment customiza-
tions.

• The product should have no dependencies on proprietary software modules; written per-
mission from you must be obtained before any such dependencies are introduced.

8By the way, those common components are quite often open source libraries themselves. These days, it's typical for
a proprietary software product to contain a lot of open source code, with a layer of proprietary custom code wrapped
around the outside.

133

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
• Documentation must be sufficient to allow third parties to understand, configure, and de-

ploy the software. (Some customers even test this by hiring an independent third party to
perform a deployment and submit any needed improvements to the installation documen-
tation — via the open source project's usual contribution channels, of course.) documenta-
tion must be in formats typically used by open source projects, e.g., plaintext, Markdown,
Asciidoc, DocBook, etc.9

• The vendor's engagement with third parties who become involved in the project should be
anticipated and budgeted for. If it is a successful open source project, there will eventually
be community management overhead, so plan for it: e.g., specify that the vendor must es-
tablish a participation workflow, review and prioritize contributions, etc.

• Set clear expectations about the extent to which the vendor will participate in publicity
about the project, both among technical developer communities and among potential users.

• You, the customer, should be the copyright owner of the code written by the vendor.

• For any patents controlled by the vendor and affecting the project, there must be an unam-
biguous, non-restrictive patent grant not just to you but to everyone who receives the code
under its open source license.

• If the vendor has little or no experience running or at least participating open source
projects, bring in a separate Open Source Quality Assurance (OSQA) vendor to pro-
vide assistance and oversight (see the section called “Open Source Quality Assurance
(OSQA)” [134]).

Although this is not a complete list — every project is different — it should give you some
idea of how to set expectations with your partners. The ability to recognize whether these ex-
pectations are being met, in spirit not just in letter, is also important of course, and is the sub-
ject of the next section.

Open Source Quality Assurance (OSQA)
When a vendor whose normal mode is proprietary development is hired to do open source,
the result is usually a product that is not truly open source and that no third party can actu-
ally deploy.10 This section is about how to avoid that problem. While in some instances the
vendor — or at least factions within the vendor — may be actively resistant to open source,

9Microsoft Word format is almost never seen in open source projects, among other reasons because it is not amenable to
auditable spot-changes by contributors. You will need to make sure your vendor knows this, or else you are likely to end
up with a lot of .docx files in the repository.
10While some selection bias no doubt informs my experience — after all, the consultant tends to get brought in when
things are going wrong, not when they're going right — my assertion that proprietary vendors don't get open source right
if left to their own habits is based not just on my own experiences but also on talking to many other people, who report
the same finding with remarkable consistency.

134

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
more often the problem is that they simply don't know what they don't know. The fastest so-
lution is to bring in that knowledge from the outside: have a separate contract with a different
company, one entirely independent of the primary vendor, to play the role of third-party open
source participant.

There is a long tradition of such outside review in technical contracting, where it's known as
IV&V, for "Independent Verification and Validation".11 It ensures that the deliverables meet
the necessary standards by having an independent party verify this. The independent review-
er reports to the customer, not to the primary development contractor.

My colleague James Vasile came up with the name Open Source Quality Assurance (OSQA)
for the corresponding role in open source software development efforts. I like that name
much better than "Open Source IV&V" because it emphasizes the interactive and collabo-
rative nature of the independent vendor's role. In an open source project, the deliverables
include not just the code, but the development process itself and the resultant potential for
third-party participation. Assistance from a separate OSQA vendor can make the difference
between a project that is open source in name only and a project that is truly open source, in
the sense that it is possible for parties other than its original developers to deploy, maintain,
and improve it.

During development, an OSQA reviewer participates the way any third party would, posting
in the project's public discussion forums, using the installation documentation to try to get
the software up and running, reporting bugs via the public tracker, submitting pull requests,
and so on. As the project reaches the alpha or beta stage, the reviewer confirms that the soft-
ware can be deployed as documented, without reliance on proprietary dependencies or ven-
dor-specific environmental conditions; that necessary per-deployment configurations can be
made; that sample data can be loaded; that there exist documented paths by which third par-
ties can participate in the project; and so on — in other words, that all the expectations one
would have of an open source project are truly met.

But the reviewer's job is not just to review. The reviewer is there to help the primary vendor
meet these expectations throughout development, and to report back to the customer as to
whether the vendor is doing so. In far too many cases, I have seen a nominally open source
project be contracted for and developed, only for the customer to discover at the end — too
late to do anything about it — that no party besides than the original vendor can actually de-
ploy, maintain, or extend the software, because the vendor never came close to meeting nor-
mal open source standards. Had parallel, independent review been built into the process from
the start, the problems would have been detected early and the unsatisfactory outcome pre-
vented. (Relatedly, see the section called “Be Open From Day One” [43].)

11For a more general discussion of IV&V, see https://en.wikipedia.org/wiki/Verification_and_validation and https://
en.wikipedia.org/wiki/Software_verification_and_validation. Note that neither of those discusses open source specifical-
ly, however.

135

https://en.wikipedia.org/wiki/Verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation
https://en.wikipedia.org/wiki/Software_verification_and_validation

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Note that the primary vendor may often be quite unconscious that anything is wrong. In their
mind, they developed and delivered software the way they usually do, so what's the problem?
The fact that no one other than them can deploy or modify the end result doesn't register as a
failure, because in all their other projects third-party deployability was not a goal in the first
place. The fact that the contract requires it is meaningless unless the customer has some way
to test and enforce that requirement. Since most customers do not have the in-house technical
capability to do so, the open source clauses in the contract are effectively void unless there is
some kind of external review process.

Independent review is not merely a sort of open source insurance, however, although it
would be worthwhile even if it were only that. It is also an investment in the success of fu-
ture partnerships with the primary vendor. The vendor becomes more inherently capable of
performing quality open source work in the future, because the OSQA process provides a
practical education in open source development. Thus, done right, third-party review results
in both a healthier open source project and a healthier long-term relationship with the prima-
ry vendor.

It also helps foster concentrations of expertise outside that primary contractor right
from the start, as discussed in the section called “Foster Pools of Expertise in Multiple
Places” [152]. Ideally, at the end of development for a new open source product, you
should have at least two independent commercial entities able to deploy and support the soft-
ware: the primary development vendor and the OSQA vendor. That's already twice as much
supplier diversity as most projects have coming out of the gate, and it's much easier to add a
third vendor than a second.

The key to successful OSQA is that the reviewer is responsible to the customer, not to the
primary development vendor. That part is crucial: even if the two vendors are contracting
through the same prime vehicle, or one is a subcontractor to the other, it must be clear in the
contracts that the reviewer reports directly to the client, interacting with the primary develop-
ment vendor only to perform the OSQA function.

The cost of OSQA review is much smaller than the cost of the main contract — generally,
expect on the order of 5% to 10% — and the benefit is large: the difference between an end
product that is not usably open source and one that is truly open source, able to be deployed
and supported by anyone.

136

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

The "New Developer" Test

One of the most useful forms of OSQA is what I call the new developer test: have a
competent developer who is entirely unfamiliar with the project approach it through its
front door, by trying to get an instance up and running, and perhaps even contributing
a minor bugfix or documentation patch.

The key is that the new developer doesn't get any special access. At the beginning of
the process, she is simply told the project's home page, and perhaps pointed to a suit-
able bug report if one is available. Her mission is to become a participant in the project
by following the project's own documented procedures for doing so. If the deployment
instructions are insufficient, she files a ticket in the issue tracker and tries to get a con-
structive response — there are no behind-the-scenes telephone calls or special requests
made by those who hired her for this role, because those would reduce the value of the
exercise.

The output of a successful New Developer Test consists of two things. One: a flurry of
forum posts, new tickets, and documentation patches that show the project the differ-
ence between where they thought they were in terms of welcoming new participants
and where they actually are. Two: a heightened appreciation on the part of the project's
developers of the effort required to make open source software that is truly approach-
able by strangers, and of what it will take to maintain that approachability over the
lifetime of the project.

Don't Surprise Your Lawyers
Corporate lawyers (and to a lesser degree lawyers in the non-profit world and in government)
sometimes have an uneasy relationship with free software. They have often spent their ca-
reers diligently seeking to maximize the control and exclusivity their clients have over every-
thing the clients produce — including software. A good lawyer will understand why their
client is choosing to deliberately give up that control for some larger purpose, when it is ex-
plained, but even then may still be unfamiliar with the factors that go into choosing an open
source license for the project, the interaction of the license with trademarks and patents, the
legal technicalities of how to accept contributed code such that it can be redistributed, etc.
(See Chapter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents [272] for a
deeper discussion of legal issues.)

The ideal course is to make sure your lawyers first understand why you are running an open
source project, and give them a chance to familiarize themselves with open source in gener-
al, before you bring the particulars of the project to them. If the lawyers are good, they will
know when they should seek help from outside advisors and will not hesitate to do so. By the

137

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
time the project is under way, the lawyers should have enough familiarity with open source
legal issues to make basic decisions with confidence, and to know when and where they need
help.

Do not assume that open source is part of a standard legal education. It is not, at least as of
this writing in 2022. If you wait until development is already under way and code is starting
to be published before consulting your legal team, they may be forced to scramble and make
under-researched decisions hastily. This will not be good for either the project or the organi-
zation, in the long run.

Funding Non-Programming Activities
Programming is only part of the work that goes on in an open source project. From the point
of view of the project's participants, it's the most visible and glamorous part. This unfortu-
nately means that other activities, such as documentation, formal testing, etc, can sometimes
be neglected, at least compared to the amount of attention they often receive in proprietary
software. Organizations are sometimes in the best position to make up this gap, by devoting
some of their own staff time to open source projects.

The key to doing this successfully is to translate between the company's internal processes
and those of the public development community. Such translation is not effortless: often the
two are not a close match, and the differences can only be bridged via human intervention.
For example, the company may use a different bug tracker than the public project. Even if
they use the same tracking software, the data stored in it will be very different, because the
bug-tracking needs of a company are very different from those of a free software community.
A piece of information that starts in one tracker may need to be reflected in the other, with
confidential portions removed or, in the other direction, added.

The sections that follow are about how to build and maintain such bridges. The end result
should be that the open source project runs more smoothly, the community recognizes the
company's investment of resources, and yet does not feel that the company is inappropriately
steering things toward its own goals.

Technical Quality Assurance (i.e., Professional
Testing)

In proprietary software development, it is normal to have teams of people dedicated solely
to quality assurance: bug hunting, performance and scalability testing, interface and docu-
mentation checking, etc. As a rule, these activities are not pursued as vigorously by the de-
velopment community on a free software project. This is partly because it's hard to get high-
ly-motivated labor for unglamorous work like testing (committers have their names inscribed

138

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
for all time in the history of the project, but there are fewer mechanisms for remembering the
tester who found the bug a committer fixed), partly because developers tend to assume that
having a large user community gives the project good testing coverage, and, in the case of
performance and scalability testing, partly because not all developers have access to the req-
uisite hardware resources anyway.

The assumption that having many users is equivalent to having many testers is not entirely
baseless. Certainly there's little point assigning testers for basic functionality in common en-
vironments: bugs there will quickly be found by users in the natural course of things. But be-
cause users are just trying to get work done, they do not consciously set out to explore un-
charted edge cases in the program's functionality, and are likely to leave certain classes of
bugs unfound. Furthermore, when they discover a bug with an easy workaround, they often
silently implement the workaround without bothering to report the bug. Most insidiously, the
usage patterns of your customers (the people who drive your interest in the software) may
differ in statistically significant ways from the usage patterns of the Average User In The
Street.

A professional testing team can uncover these sorts of bugs, and can do so as easily with
free software as with proprietary software. The challenge is to convey the testing team's re-
sults back to the public in a useful form. In-house testing departments usually have their own
way of reporting test results to their own developers, involving company-specific jargon, or
specialized knowledge about particular customers and their data sets. Such reports would
be inappropriate for the public bug tracker, both because of their form and because of con-
fidentiality concerns. Even if your company's internal bug tracking software were the same
as that used by the public project, management might need to make company-specific com-
ments and metadata changes to the tickets (for example, to raise a ticket's internal priori-
ty, or to schedule its resolution for a particular customer). Usually such notes are confiden-
tial — sometimes they're not even shown to the customer. And even when they're not confi-
dential, they're not very helpful to the public project.

Yet the core bug report itself is important to the public. In fact, a bug report from your test-
ing department is in some ways more valuable than one received from users at large, since
the testing department probes for things that other users won't. Given that you're unlikely to
get that particular bug report from any other source, you definitely want to preserve it and
make it available to the public project.

To do this, either the QA department can file tickets directly in the public ticket tracker, if
they're comfortable with that, or an intermediary (usually one of the developers) can "trans-
late" the testing department's internal reports into new tickets in the public tracker. Transla-
tion simply means describing the bug in a way that makes no reference to customer-specif-
ic information (the reproduction recipe may use customer data, assuming the customer ap-
proves it, of course).

139

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
It is definitely preferable to have the QA department filing tickets in the public tracker di-
rectly. That gives the public a more direct appreciation of your company's involvement with
the project: useful bug reports add to your organization's credibility just as any technical con-
tribution would. It also gives developers a direct line of communication to the testing team.
For example, if the internal QA team is monitoring the public ticket tracker, a developer can
commit a fix for a scalability bug (which the developer may not have the resources to test
herself), and then add a note to the ticket asking the QA team to see if the fix had the desired
effect.

Either way, once a public ticket exists, the original internal ticket should simply reference the
public ticket for technical content. Management and paid developers may continue to anno-
tate the internal ticket with company-specific comments as necessary, but use the public tick-
et for information that should be available to everyone.

You should go into this process expecting extra overhead. Maintaining two tickets for one
bug is, naturally, more work than maintaining one ticket. The benefit is that many more
coders will see the report and be able to contribute to a solution.

Legal Advice and Protection

Corporations, for-profit or nonprofit, are almost the only entities that ever pay attention to
complex legal issues in free software. Individual developers know basic differences between
various open source licenses, but they generally do not have the time or resources to com-
petently handle legal issues themselves. If your company has a legal department, it can help
a project by assisting with trademark issues, copyright license ownership and compatibility
questions, defense against patent trolls, etc. If the project decides to organize formally, or to
join an existing umbrella organization (as described in the section called “Joining or Creating
a Non-Profit Organization” [114]), your legal department can help with issues of corporate
law, asset transfer, reviewing agreements, and other due diligence matters.

Some more concrete ideas of what sorts of legal help might be useful are discussed in Chap-
ter 9, Legal Matters: Licenses, Copyrights, Trademarks and Patents [272]. The main
thing is to make sure that communications between the legal department and the develop-
ment community, if they happen at all, happen with a mutual appreciation of the very differ-
ent universes the parties are coming from. On occasion, these two groups talk past each oth-
er, each side assuming domain-specific knowledge that the other does not have. A good strat-
egy is to have a liaison (usually a developer, or else a lawyer with technical expertise) stand
in the middle and translate for as long as needed.

Documentation and Usability

140

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Documentation and usability are both famous weak spots in open source projects, although I
think, at least in the case of documentation, that the difference between free and proprietary
software is frequently exaggerated. Nevertheless, it is empirically true that much open source
software lacks first-class documentation and usability research.

If your organization wants to help fill these gaps for a project, probably the best thing it can
do is hire people who are not regular developers on the project, but who will be able to in-
teract productively with the developers. Not hiring regular developers is good for two rea-
sons: one, that way you don't take development time away from the project; two, those clos-
est to the software are usually the wrong people to write documentation or investigate usabil-
ity anyway, because they have trouble seeing the software from an outsider's point of view.

However, it will still be necessary for whoever works on these problems to communicate
with the developers. Find people who are technical enough to talk to the coding team, but not
so expert in the software that they can't empathize with regular users anymore.

A medium-level user is probably the right person to write good documentation. In fact, af-
ter the first edition of this book was published, I received the following email from an open
source developer named Dirk Reiners:

One comment on Money::Documentation and Usability: when we had
some money to spend and decided that a beginner's tutorial was the most
critical piece that we needed we hired a medium-level user to write it. He
had gone through the induction to the system recently enough to remem-
ber the problems, but he had gotten past them so he knew how to describe
them. That allowed him to write something that needed only minor fixes
by the core developers for the things that he hadn't gotten right, but still
covering the 'obvious' stuff devs would have missed.

Funding User Experience (UX) Work

The field of user experience (UX) design has lately (starting somewhere between 2010 and
2020) begun to acquire a new seriousness of purpose and consistency of professional stan-
dards. Naturally, one thing many companies think of when they want to help improve an
open source project is to fund UX work, since that's just the sort of thing that projects often
overlook or, in some cases, don't even know they need.

As with many other types of engagement, do not assume that a UX expert can be parachut-
ed into the project. User experience design is not a checkbox. It is an attitude taken by a team
throughout development, and one of the primary qualifications to look for in UX contrac-
tors is their ability to gain long-term credibility with the developers, and to help develop-
ers pay attention to user experience goals. For example, in addition to their innate domain
knowledge, UX designers often know how to set up and incorporate feedback from user trial-

141

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
s — but those trials will only be effective if the results are presented to the development team
in a way that makes it easy for the developers to take the results seriously. This can only hap-
pen through a sustained, two-way interaction, in which UX experts are subscribed to the ap-
propriate project forums and take the attitude that they are a kind of specialized developer on
the project, rather than an outside expert providing advice. Use UX experts who have worked
with open source projects before, if possible.

Providing Build Farms and Development
Servers

Many projects have infrastructure needs beyond just hosting of code, bug tracker, etc. For
example, projects often use continuous integration (CI) testing, a.k.a. build farms, to auto-
matically ensure that the changes developers are committing integrate cleanly into the main
branch and pass all automated tests. See the section called “Automated testing” [243] for
more about this practice.

Depending on the size and complexity of the codebase, the number of developers checking
in changes, and other factors, running a responsive build farm can cost more money than any
individual developer has at their disposal. A good way to help, and gain some goodwill in the
process, is to donate the server space and bandwidth and the technical expertise to set up the
continuous integration and automated testing. If you don't have the technical expertise avail-
able on staff, you could hire someone from the project to do it, or at the very least give some
of the project's developers administrative access to the CI servers so they can set things up
themselves.

Running Security Audits
If your company has a good internal security department, or can afford to hire specialists,
providing in-depth security review on an open source project's code base can do the project
a tremendous amount of good. Any feedback from a security audit should be provided
back to the project using the precautions described in the section called “Receive the Re-
port” [197]. However, it is fine to be public about the fact that you are conducting the au-
dit; there your organization should get credit for a substantial contribution like that.

Sponsoring Conferences, Hackathons, and
other Developer Meetings

A very effective use of funds is to sponsor in-person contact between developers who might
not otherwise meet. The usefulness of in-person meetings — e.g., conferences, hackathons,

142

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
smaller informal meetups, etc — is mainly discussed in the section called “Meeting In Per-
son: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats” [248]. Here I will
simply mention that encouraging such encounters is a very good use of money in an open
source project. From a corporate sponsorship point of view, nothing creates good will like a
plane ticket and a hotel room. From a personnel management point of view, it is healthy for
your own developers to have in-person contact with their peers in the open source projects
they work on, and when those peers work at at other companies, project-centric meetups are
the perfect neutral ground for such meetings.

Sending your developers to conferences is also a good way to signal commitment to a
project. When others meet your developers at a conference the first time, it is a signal that
your company has a real investment in the project. But when your developers show up again
at the same conference the next year, still working on the same project, that's a very power-
ful signal that your organizational commitment to the project is long-term and strategic. This
gives your developers an advantage in influencing the direction of the project, because they
are seen as people who will be around for the long term, and it of course gives your company
a recruiting advantage when you are looking for new developers to work on the same project.

Even when you don't have people traveling to a meetup, you can still sponsor some of the
meetup's expenses. Everyone remembers fondly the company that sponsors the pizza, or
lunch, or drinks or dinner for one night of the meetup.

Marketing
Although most open source developers would probably hate to admit it, marketing works.
Good marketing can create buzz around an open source product, even to the point where
hardheaded coders find themselves having vaguely positive thoughts about the software for
reasons they can't quite put their finger on. It is not my purpose here to dissect the arms-race
dynamics of marketing in general. Any corporation involved in free software will eventual-
ly find itself considering how to market themselves, the software, or their relationship to the
software.

Much of the advice in this section is simply about how to avoid common pitfalls in market-
ing open source products (see also the section called “Publicity” [195] and the section
called “Don't Bash Competing Open Source Products” [181]), although we will start by
examining a major marketing advantage that open source products enjoy over proprietary
products, and that open source businesses should promote as often as possible: the lack of
vendor lock-in.

143

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

Open Source and Freedom from Vendor Lock-
In

Vendor lock-in is what happens when a vendor sells a service or product to a customer, per-
haps at a cheap up-front price, but the customer has to make certain further investments in
order to use the product — e.g., infrastructure changes, workflow and other process changes,
data reformatting, retraining, etc. The cost to the customer of switching away from that ven-
dor's product is now the degree to which the vendor has the customer locked in. Note that
these switching costs are different from sunk costs. There may also be sunk costs involved,
but that is independent of the switching costs, and it is the latter that are the real issue here.
Even if the customer is eventually unhappy with the vendor, by that point the total cost of
moving to someone else may be quite high, and that cost is separate from whatever licensing
or service fees the vendor charges.

The great commercial strength of open source is that product and vendor are not the same.
In open source, you can switch to another vendor, or to a combination of vendors, or even a
combination of vendor and in-house support, all while continuing to use the same product in
more or less the same way.

So if you sell open source, make sure your potential customers are clear on this point, and
give them as many concrete examples as you can. It may, in some circumstances, even be
useful to point out the existence of some of your competitors, because their presence para-
doxically reassures the customer that choosing you is a safe decision — if things don't work
out, there are other options. If you just make sure things work out, then the customer will
never need to seek out those other options.

Proprietary vendors often compete against open source by talking about the "total cost of
ownership", that is, they sell against open source's up-front cost of zero — no per-copy roy-
alties, no per-seat license fees — by pointing out, reasonably enough, that although there
may be no licensing fees, in practice software integration involves organizational and tech-
nical costs that can be quite significant. This is quite true, as far as it goes, but that argument
works the other way too: to the extent that there are such costs — and there really are — the
danger to the customer of vendor lock-in is directly proportional to them. Another way of
saying it is that the costs of proprietary software tend to outstrip the costs of open source
over a long enough period of time. One pays a premium for decreasingly competitive vendor
selection, both in money and in loss of flexibility and options.

To draw a contrast with "total cost of ownership", I would love to see open source sales rep-
resentatives talk more about the "cost of total ownership", that is, how much does it cost a
company to be totally owned by its software vendors? With open source, customers are not
owned — they are the owners, to exactly the degree that they want to be, and they can out-
source as much of that responsibility to outside vendors as they want. Their relationships

144

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
with those vendors are thus more likely to be based on mutual satisfaction and mutual ben-
efit, not on an asymmetrical pseudo-monopoly that gives existing vendors undue inertia in
customers' procurement decisions.

Remember That You Are Being Watched
For the sake of keeping the developer community on your side, it is very important not to
say anything that isn't demonstrably true. Audit all claims carefully before making them, and
give the public the means to check your claims on their own. Independent fact checking is a
major part of open source, and it applies to more than just the code.

Naturally no one would advise companies to make unverifiable claims anyway. But with
open source activities, there is an unusually high quantity of people with the expertise to ver-
ify claims — people who are also likely to have high-bandwidth Internet access and the right
social contacts to publicize their findings in a damaging way, should they choose to. When
Global Megacorp Industries pollutes a stream, that's verifiable, but only by trained scien-
tists, who can then be refuted by Global Megacorp's scientists, leaving the public scratch-
ing their heads and wondering what to think. On the other hand, your behavior in the open
source world is not only visible and recorded, it is also easy for many people to check it inde-
pendently, come to their own conclusions, and spread those conclusions by word of mouth.
These communications networks are already in place: they are the essence of how open
source operates, and they can be used to transmit any sort of information. Refutation is diffi-
cult when what people are saying is true.

For example, it's okay to refer to your organization as having "founded project X" if you re-
ally did. But don't refer to yourself as the "makers of X" if most of the code was written by
outsiders. Conversely, don't claim to have a deeply involved, broad-based developer commu-
nity if anyone can look at your repository and see that there are few or no code changes com-
ing from outside your organization.

Case Study: You Can't Fake It, So Don't Try

Years ago I saw an announcement by a very well-known computer company, stating that
they were releasing an important software package under an open source license. When the
initial announcement came out, I took a look at their now-public version control repository
and saw that it contained only three revisions. In other words, they had done an initial import
of the source code, but hardly anything had happened since then. That in itself was not wor-
rying — they'd just made the announcement, after all. There was no reason to expect a lot of
development activity right away.

Some time later, they made another announcement. Here is what it said, with the name and
release number replaced by pseudonyms:

145

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
We are pleased to announce that following rigorous testing by the Singer
Community, Singer 5 for Linux and Windows are now ready for production
use.

Curious to know what the community had uncovered in "rigorous testing," I went back to the
repository to look at its recent change history. The project was still on revision 3. Apparent-
ly, they hadn't found a single bug worth fixing before the release! Thinking that the results of
the community testing must have been recorded elsewhere, I next examined the bug tracker.
There were exactly six open tickets, four of which had been open for several months already.

This beggars belief, of course. When testers pound on a large and complex piece of software
for any length of time, they will find bugs. Even if the fixes for those bugs don't make it into
the upcoming release, one would still expect some version control activity as a result of the
testing process, or at least some new tickets. Yet to all appearances, nothing had happened
between the announcement of the open source license and the first open source release.

The point is not that the company was lying about the "rigorous testing" by the communi-
ty (though I suspect they were). The point is that they were oblivious to how much it looked
like they were lying. Since neither the version control repository nor the ticket tracker gave
any indication that the alleged rigorous testing had occurred, the company should either not
have made the claim in the first place, or should have provided a clear link to some tangible
result of that testing ("We found 278 bugs; click here for details"). The latter would have al-
lowed anyone to get a handle on the level of community activity very quickly. As it was, it
only took me a few minutes to determine that whatever this community testing was, it had
not left traces in any of the usual places. That's not a lot of effort, and I'm sure I'm not the
only one who took the trouble. (It's now been over a decade since that announcement; I can
confirm that the software project did not flourish.)

Transparency and verifiability are also an important part of accurate crediting, of course. See
the section called “Credit” [264] for more on this.

Don't Bash Competing Vendors' Efforts
Another situation companies find themselves in, when selling services based on open source
software, is that they have competitors in the marketplace who may be selling services based
on the same software.

If you're going to sell your company's services, you inevitably will need to compare your
company against others selling the same or similar things. This is expected, and in many
ways healthy. However, be careful to avoid straying into public criticism of the other devel-
opment teams or of their development priorities.

Your own developers have to work directly with those competitors' developers in the open
source project. They often have friendly relations, show up at the same conferences, etc.

146

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Even if that's not the case today, it may be tomorrow (as discussed in the section called
“Don't Bash Competing Open Source Products” [181]). Furthermore, you may find your-
self hiring developers from your competitors; if you burn up available goodwill in advance,
you may not get the best candidates.

Without mentioning names, in part because the situation eventually got better and I don't
want to rekindle the flames now, I will say that I saw exactly this happen between two com-
panies (one of whom was my employer at the time) who were competing to sell services
based on the same open source software. The ill will stirred up among the project's develop-
ers by the marketing statements of one company (not my employer) had real consequences,
and that company lost out on retaining the services of some excellent developers because it
failed to think about the fact that their marketing in the commercial realm was also visible
and had effects in the development community.

"Commercial" vs "Proprietary"
One common pattern among companies involved in open source software is to market a fully
open source version of their product alongside, and in direct comparison to, an enhanced pro-
prietary version. Since the open source version is free software, anyone could in theory add
those enhancements themself, or collaborate with others to do so, but in practice, the effort
required to do that (and to maintain a divergent fork of the project) is, for each collaborator,
much greater than the cost of just paying for the proprietary version, so it rarely happens.

This sales model is often referred to as "open core", that is, a core set of functionality that
is available as open source software, with a more featureful application wrapped around it
as proprietary software. This model usually depends on the open source core having a non-
copyleft license, of course, and is discussed in more detail in the section called “Proprietary
Relicensing” [286].

Open core is somewhat controversial among open source developers, but it has been success-
ful strictly from a business point of view: companies that do it make money in the way that
they expect to make money. However, there is bit of marketing slippage that many of these
companies fall into, and I would like to point it out here in order to convince you not to be
part of the problem.

If you sell a free software version and an enhanced proprietary version of your product,
please use the words "open source" and "proprietary" to refer to them, respectively. Do not
call the open source version the "Community Edition" and the proprietary version the "Com-
mercial Edition" (or "Enterprise Edition").

Aside from the fact that everyone knows there is very little "community" around these so-
called "Community Editions", there is a deeper problem here. Calling the proprietary version

147

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
the "Commercial Edition" implies that open source software is not commercial, while calling
it the "Enterprise Edition" implies that open source software is not suitable for enterprise-lev-
el use. The former is untrue because open source software is commercial by definition: the li-
cense guarantees the freedom to use the software for any commercial purpose. (Open source
is anti-monopoly, of course, but that doesn't affect its commerciality.) The latter is also gen-
erally untrue: open source software is widely used at enterprise scale, with and without third-
party support, and chances are an enterprise could use your open source edition too.

This kind of misleading marketing particularly hurts efforts by open source companies to
get their software accepted by governments and by other buyers who have sophisticated pro-
curement requirements. These procurement regulations often include stipulations that pur-
chased software must be "commercial", "commercial off-the-shelf", or "commercially avail-
able" — definitions that all open source software meets — so portraying open source as non-
commercial gives purchasing officers a misimpression. When those decision-makers think of
open source as inherently non-commercial, that hurts open source software as a whole.

Open Source and the Organization
Through the consulting work I've done in the years since the first edition of this book was
published, it's become clear to me that there are special concerns that apply to organizations
launching or participating in open source projects. Organizations contain formal management
structures and informal social structures: both are affected by engagement with open source
projects, and both may need adjustment to better support open source activity by the individ-
uals within the organization. In particular, government agencies have special pitfalls to watch
out for when working with open source projects.

This section therefore examines organizational issues generally, and some issues specific to
government agencies, and offers advice about how to make organizational engagement with
open source more likely to succeed. Many of these recommendations will be brief and some-
what generalized, not because there isn't more depth to go into, but because the specifics can
vary so much from organization to organization that exploring all the possibilities here would
require too much space. Please treat these bits of advice as starting points, not as complete
recipes in themselves.

Dispel Myths Within Your Organization
In organizations that have been producing or using proprietary software for a long time, cer-
tain myths about open source software sometimes circulate. One traditional source of such
myths is, of course, sales representatives from vendors of proprietary systems. But one can't
attribute it all to them. It's just as often the case that someone had some bad experiences in an
open source project, or used open source in the past without ensuring proper support chan-

148

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
nels, and since that was their first experience in an unfamiliar territory, the entire territory is
now tainted.

Below are some of the myths I've encountered most frequently. First, the negative myths:

If it's open, that means anyone can change our code.

Believe it or not, you need to be prepared to respond to this. Sometimes people — par-
ticularly senior decision-makers who have limited technical experience — don't under-
stand the difference between an upstream codebase allowing anyone to copy the code
and modify the resultant copies, and someone modifying the particular instance that you
deploy. The former is just the definition of open source, of course. The latter would be
a security vulnerability, if it happened, but it has nothing to do with the license on the
code. I mention this myth merely to prepare you for encountering it, because otherwise
you might not expect that anyone could hold this particular misunderstanding. Trust me,
they can, and you need to be ready to answer it.

Open source software is insecure, because anyone can see the code / change the code.

These are so easy to answer that I won't give a detailed refutation here; again, I mere-
ly note it so you can be prepared for it. If you find yourself having to explain why open
source software is at least as secure as any other kind of software, if not more secure,
you may wish to use the excellent resources provided by Dr. David A. Wheeler at http://
www.dwheeler.com/#oss.

Open source comes with no support.

There are plenty of companies that sell support for open source software, and they're not
hard to find. There are also wonderfully helpful unofficial support communities on the
Internet for different open source packages, of course, but often what organizations are
looking for is vendor that offers a guaranteed response time. Such offerings are avail-
able, it's just that the source from which you procure the software may be unrelated to
the source from which you procure the support. One way to respond to this myth is to
ask specifically what packages support is desired for, and then show some sources of
support available for them.

If we open source this project, we'll have to spend a lot of time interacting with outside de-
velopers.

You open source your code, not your time and attention. You are never under any oblig-
ation to respond at all to outside parties, let alone engage substantively with them. You
should only do so when engaging will benefit you — which it often will; after all, one
of the key strengths of open source is that it enlarges the collective brain of your devel-
opment team in direct proportion to how much they interact with other developers who

149

http://www.dwheeler.com/#oss
http://www.dwheeler.com/#oss

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
become interested in the code. But that engagement is always under your control and at
your discretion. If you don't want your team's attention going to bug reports or devel-
opment questions from outside your organization, that's fine. Just be up front about that
in project announcements and in the documentation, so that others can take that into ac-
count before they put a lot of energy into trying to communicate with your developers,
and so they can decide whether forking to create a more open community would make
sense for them (indeed, sometimes it might even be to your advantage for them to do
that).

If we open source this project, then we'll have to release all our other stuff as open source
too.

This myth usually results from a misunderstanding of copyleft licenses and the GNU
General Public License (GPL) in particular. I won't go into detail here; see Chapter 9,
Legal Matters: Licenses, Copyrights, Trademarks and Patents [272] for a discussion
of what the GPL actually stipulates. After reading that chapter, especially the section
called “The Copyright Holder Is Special, Even In Copyleft Licenses” [283], you will
be able to explain why this belief is incorrect.

Next, the positive myths:

Open source is cheaper.

Licensing costs are often not the largest cost with proprietary software; they are often
outweighed by training costs, installation and configuration costs, and other factors that
make up the "total cost of ownership". But all of those other costs are, on average, the
same for open source software. Don't make the mistake of pitching your organization
on open source software on the grounds that it is cheaper. At least in terms of the most
easily quantified costs, it is not. It is often cheaper in the long run, because it frees your
organization from proprietary vendor lock-in (see the section called “Open Source and
Freedom from Vendor Lock-In” [144]), reduces training costs for new employees
(because they arrive already familiar with the software), gives you greater ability to cus-
tomize software to your needs — which is a strategic advantage, not just a cost advan-
tage — and so on. But these are long-term benefits, and they may not show up direct-
ly on a balance sheet unless you take steps to make your accounting reveal them. In the
short term, open source generally isn't cheaper than proprietary software, and shouldn't
be pitched that way.

Developers will devote attention to this code just because we released it.

People with little experience in open source sometimes assume that the mere act of
releasing code to the public will result in a flurry of attention from other developer-
s — questions, patches, high-quality code review, bug reports, etc. But what actually

150

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
happens, in most cases, is silence. Most good developers are busy people, and they're
not going to pay attention to your project until they have some reason to. If your code is
good and solves a real problem, you can expect word to travel to the right places even-
tually, and of course you can help that word along with tactically smart announcements
and posts (see the section called “Publicity” [195]). But until your code has had time
to naturally accumulate credibility and mindshare, most people won't pay any attention,
so you shouldn't expect that first release to be a big deal for anyone but you.

There is a situation in which this myth is not a myth. A large organization with a reputa-
tion and a dedicated public relations team can create buzz around an initial open source
release. If you do this, then make sure not to squander that buzz: be ready to construc-
tively engage the developer attention you attract right away.

Other companies / cities / whoever will pick up this software and start using it right away.

Adopting any software involves costs. Indeed, merely evaluating software involves
costs. So when you release a new open source project that you and your team are excited
about, that doesn't necessarily mean other entities are going to adopt that software right
away. Many of them may notice it, if you've done your announcement process well, but
that just means they'll put it on their list of things to investigate based on long-term orga-
nizational priorities — in other words, they'll take a closer look based on their schedule,
not yours. So don't expect a flood of early adopters. You may get a few, and they should
be cultivated because they will provide the word-of-mouth that gets you more adopters.
But in general you're more likely to see a trickle of early adopters over the first year or
so after your initial release, than to see a flood of them immediately when the release is
made.

We can casually copy open source code into our own code.

Open source licenses are still licenses, and they come with a few conditions. Virtually
all of them require attribution at the source level and inclusion of the license together
with the covered code. Some licenses, especially the copyleft licenses discussed in the
section called “Aspects of Licenses” [276], cause the entire derivative work to be un-
der the same open source license, thus implying redistribution obligations that you may
not want. Some licenses have patent clauses that can affect your company in complex
ways.12

For all these reasons, incorporating open source code into software that will be distrib-
uted under a different license — whether open source or proprietary — cannot be done
casually. Organizations that incorporate open source code into their products usually

12I am strongly opposed to software patents of any kind, for the reasons given in the section called “Patents” [292],
but if you are a patent holder I would still like you to at least be aware of the possible patent consequences of incorporat-
ing open code into your programs.

151

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
need a formal process for doing so, one that involves review by someone who under-
stands the legal issues and the possible interactions between licenses.

Foster Pools of Expertise in Multiple Places
Sometimes organizations that are accustomed to procuring proprietary software treat open
source software as if it were proprietary, in the sense that they assume there is exactly one
authoritative provider of expert support, and that therefore it is necessary to have a commer-
cial relationship with that provider.

That's not how open source works. One of the great strengths of open source is the availabil-
ity of support from multiple, competing providers. It's perfectly fine, and often advisable, to
have a commercial relationship with just one of those sources, but you must remember that
support in open source is fundamentally a marketplace, not an add-on feature that just hap-
pens to come with the software license, as is often the case with proprietary software. Actual-
ly, even proprietary software sometimes has a competitive support marketplace — think for
example of the third-party support providers for Oracle databases and Microsoft operating
systems — but in open source these marketplaces tend to be more fluid and not as dominat-
ed by single, easily-recognizable giants, because there isn't necessarily one commercial out-
fit that automatically assumes a place at the top of the hierarchy to sell gold-label support (as
Oracle or Microsoft themselves would be, in the example just given).

The goal of fostering independent pools of expertise should even influence how you structure
contracts to develop the software in the first place. If you hire a firm to develop new open
source software, have a few of your own programmers working alongside them if possible,
so that you accumulate some in-house expertise. This is not necessarily because you won't
want to use the same firm for future maintenance — they might be a great choice — but just
so that you'll have a better bargaining position and not be locked in. Essentially, the more
people in different organizations who know the code, the healthier it is for the project, and
the better position you are in.13 The report Open Data For Resilience Initiative & Geonode:
A Case Study On Institutional Investments In Open Source14 describes in detail how this
technique was used in the GeoNode project, for example.

If your organization does not have enough in-house technical ability to participate in the de-
velopment process directly alongside your contractor, or at least to perform knowledgeable
review, then I strongly recommend finding a third-party to provide independent deployability
and maintainability review while the project is under way, as described in the section called
“Open Source Quality Assurance (OSQA)” [134].

13This is also one of the side benefits of holding hackathons, as discussed in the section called “Sponsoring Conferences,
Hackathons, and other Developer Meetings” [142].
14https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Invest-
ments-in-Open-Source.pdf. I am a co-author.

152

https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf
https://opendri.org/wp-content/uploads/2017/03/OpenDRI-and-GeoNode-a-Case-Study-on-Institutional-Investments-in-Open-Source.pdf

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments

Establish Contact Early With Relevant Communities

Another way to foster independent sources of expertise is to establish contact with poten-
tially interested technical communities early and often during development. They're almost
always out there. For example, if you're developing software with geospatial functionality,
there is an open source geospatial community that probably wants to hear about it; if you're
developing software to process financial data, or medical data, there are open source fintech
and medical data communities.

You may even have already announced your project to those people when you began, as dis-
cussed in the section called “Announcing” [48]. But there's more you can do to create exter-
nal reservoirs of knowledge. When your project runs across a design issue that you suspect
others may have encountered before, it's fine to ask them how they handled it, as long as you
do your homework by first finding out what you can from their code and documentation and
then asking any remaining questions. You can also arrange small-scale contracts with devel-
opers who are active in related projects, to serve two goals at once: improving your project's
quality while also establishing mindshare in places that may be strategically useful later.

Don't Let Publicity Events Drive Project Sched-
ule

Although open source projects are amenable to software project management techniques, in
general if you have an active developer community you do lose some control over the ex-
act timing of events in the life of the project, especially the scheduling of releases. Or rather,
you can still have as much control as you want, but then there are other things you lose if you
exercise that control in the wrong way. For example, if the release manager (see the section
called “Release Manager” [220]) is someone from outside your organization, and she's
doing a good job, then if you try to force the release to be on a certain precise date, you may
cause her and many of the developers participating in release-specific work to give up and
devote their attention to something else. You'd gain fine-grained control of the release sched-
ule, but at the cost of lower quality releases and the possible loss of some of your develop-
ment community.

This is just one example illustrating the general principle that if you have publicity needs re-
lated to an open source project, you generally shouldn't let those needs drive the project's
schedule. If you arrange a press conference for the project reaching 1.0 and being deployed
live, but then the developers decide on an extra two weeks of testing because of some last-
minute bugs, you'll have some improvising to do. (This example is drawn from real life, by
the way.)

There are two ways to achieve this independence, and they are not mutually exclusive. One
way is to just let project events drive publicity instead of the other way around, such as by

153

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
preparing release announcements ahead of time but being ready to publish them based on
when the release is actually done. The other way is to create publicity events that are not
bound to development milestones, but are rather associated with project-related things that
are able to be scheduled, such as new support offerings, new partnership announcements,
major deployments, conference appearances, hackathons, etc.

You might be tempted to try a third way: to bring the development community into the
scheduling process, so that through consensus you are able schedule certain milestones accu-
rately enough to tie timed publicity to them. While that may sound like a good idea, in prac-
tice it rarely works. An exception to this is if the whole project is on board with doing time-
based releases, as described in Time-Based Releases vs Feature-Based Releases [216]. If
the development community as a whole shares that goal, then they will make the sacrifices
necessary to keep to the time-based cycle — but your organization must also be willing to
abide by that schedule, even if it doesn't always align with business needs.

An open source development community's first priority is the software itself, and making
sure it meets the needs its developers are working toward. Of course the community wants
releases and other deadlines to be met with reasonable regularity, and every development
community makes tradeoffs for that. But even with the best of intentions among all parties,
you can never guarantee how that tradeoff will be decided in a particular case, when things
get down to the wire. The outcome of a community's decision-making process cannot be
anticipated with perfect accuracy, by definition — if it could, there would be no need for a
decision-making process. So while it's fine to try to influence the community's priorities in
ways that work to your advantage, you should avoid relying on that for scheduling purposes,
because you won't succeed at it every time.

The Key Role of Middle Management
If you intend to have long-term organizational engagement with open source software
projects, the people in your middle layer of management will play a key role in determining
whether you succeed or fail.

Supervising programmers who spend part or all of their time on open source projects is more
complex than supervising programmers on purely internal projects. Many aspects of the de-
velopers' work and schedule will be strongly influenced by external factors not under the
control of management, and in any case the developers' own desires may not always perfect-
ly line up with the employer's. After all, each developer now has two unrelated audiences
to satisfy: her employer, as embodied by her direct manager, and her colleagues in the open
source project, many of whom may work for other employers.

If a manager is not sufficiently sensitive to this dynamic, then developers can start to feel like
they're being pulled in conflicting directions. Sometimes this is just the result of poor plan-
ning, but other times it may be unavoidable. Good management can prevent the former case

154

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
from happening in the first place. In the latter case, good management is essential for recog-
nizing the situation and addressing it so as to give the developer clarity and a way to handle
the conflict.

Middle managers also have not only the usual upward and lateral internal reporting respon-
sibilities, but are to some degree responsible for the image — the open source brand identi-
ty — of the organization itself in the projects where its developers are active. This essentially
means having an entire extra constituency to satisfy, and managers who have no experience
with open source participation themselves are unlikely to have a solid understanding of how
to position the organization and its developers within the project.

The middle layer of management is often also in the best position to serve as a communica-
tions conduit and information filter between the project (that is, the whole project including
all its other participants) and the company. The wealth of information available from the ac-
tivity in an open source project is most useful to the organization if there is a filtered chan-
nel by which the most interesting activities can be communicated to the relevant stakehold-
ers within the organization — stakeholders who might include other technical staff, execu-
tives, and sales team members. Both by their position and their temperament, the program-
mers themselves are often not best suited to serve as this conduit. They may have a very deep
understanding of the particular projects they work on, but they often have a less complete
view of the organization's interests — for example, in a commercial environment, the pro-
grammers often do not have a clear idea of how the project fits into the company's strategy,
various lines of business, or sales processes. Middle managers are better positioned to main-
tain the requisite bidirectional sensitivity: aware enough of the project to ask the program-
mers for more information when necessary, and aware enough of the organization to have a
sense of what in the project is most relevant to the organization.

Think carefully about who occupies the middle management positions that serve as the inter-
face between the organization's priorities and the open source project's development direc-
tion, and provide them with extra training if necessary. It is best if the managers themselves
have had direct, personal experience as participants in some open source project. This doesn't
have to be the same project as the one for which they are now managing developers; the sit-
uations and tensions that arise in open source projects tend to be similar, so experience from
one project will generally translate well to other projects. But a manager who has never dealt
with open source projects first-hand at all will start out with limited ability to understand the
pressures faced by the organization's developers operating in open source environments, and
limited ability to be an effective communications conduit between the organization and the
project.

InnerSourcing
InnerSource or innersourcing means using standard open source development practices on-
ly within the boundaries of an organization. For example, a company might move all of its

155

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
projects to GitHub (albeit in private, not public, repositories), and declare that, inside the
company, any engineer can report bugs and contribute pull requests to any project anywhere
else in the company. Innersourcing also often includes serious efforts at internal cultural
change: managers encouraging developers to speak their mind on both technical and process
issues, developers being given more latitude to choose which projects and teams they work
with, etc.

In early 2016 I conducted interviews15 with open source specialists at a number of medium-
and large-sized technology companies, many of whom had observed innersourcing efforts
and were willing to talk about the results. What they reported was pretty consistent from
company to company, and consistent with my own experience as a consultant: innersourcing
really can make a positive difference, in several ways, but it's also definitely not the same as
true open source.

For companies that already participate in open source projects, innersourcing can reduce the
difference between internal development practices and external ones. If some of your engi-
neers participate in upstream open source projects anyway, where they must use typical open
source collaboration tools and adhere to open source standards for submitting and reviewing
code and documentation, then moving the company's internal engineering infrastructure and
processes in that direction means less context-switching overhead for existing staff, an easier
onboarding process for new hires, and often improved technical compatibility between inter-
nal and external projects. (For these reasons, innersourcing is also often used as the first "ba-
by steps" toward genuine corporate participation in open source projects.)

But the benefits of innersourcing go beyond that. When accompanied by a real commitment
to reduce managerial and organizational barriers to engineers participating in projects across
the company, innersourcing can improve morale, help spread expertise around the company
and make software development more efficient.16

Nevertheless, innersource is not the same as open source, nor is it even "open source lite".
The managers we talked to reported that innersourced projects don't have the provocative,
uncontrolled energy of truly open source projects, because all the actors in innersourcing
are, ultimately,embedded in the same hierarchical authority structure. Fundamentally, open
source dynamics require at least the potential for totally permissionless modification (i.e.,
you don't have to worry what someone else might think of a fork). When software only cir-
culates within a given management hierarchy, then that potential for permissionless collabo-
ration vanishes — and with it, the potential for true open source behavior vanishes too. The
permission structure that governs one's behavior with respect to the code is not just a matter

15Actually, my friend and business partner James Vasile and I both conducted these interviews, and we were much aided
by O'Reilly Media providing introductions to open source staff at a few companies where we did not have personal con-
tacts.
16If you're interested in learning more, see http://innersourcecommons.org/, where Danese Cooper and others have orga-
nized a number of resources about InnerSource.

156

http://innersourcecommons.org/

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
of the code's license: it's also about power: whom you report to, what others in the hierarchy
might think about your changes, etc.

In the long run, the dynamics of open source collaboration require an external supply of free-
dom. There must always be people who could, in principle, fork or do whatever they want
without worrying about consequences to the original authors' organization. When that exter-
nal freedom is removed, everything changes.

Innersourcing also fails the "portable résumé" test — an employee can't take the code with
her, and her work will not be publicly visible (see the section called “Hiring Open Source
Developers” [157]). If she leaves the company, she will be alienated from the fruits of her
work, which means that her motivation to personally invest is reduced.

None of this means that innersourcing isn't worth it. It can be very beneficial on its own
terms, and is also sometimes useful as an intermediate step for a traditionally closed compa-
ny that's still figuring out how to do open source participation. Just don't imagine that inner-
sourcing is somehow "just like open source, but inside our company". They're two different
things and shouldn't be conflated.

Hiring Open Source Developers
If you're trying to hire developers who have open source experience, you have a big advan-
tage compared to hiring other kinds of developers. Most of the résumé of an open source de-
veloper is public — it's everything they've ever done in every open source project they've
ever worked on, because all of that activity is publicly archived.17 But you shouldn't need to
go searching for all of it. When you put out a job posting, tell prospective candidates direct-
ly that the résumé they send in should include references to their open source profile. This
means their committer accounts on the projects where they've been active (or their account
names at the overall project hosting sites where they're been active, e.g., their usernames on
sites like GitHub, GitLab, etc), the email addresses or usernames they have used when post-
ing in discussion forums, documentation they have written, and anything else that would lead
you to places where you can see their open source project activity.

Look not only at their direct technical activity, but also at their relations with the other de-
velopers in the project. Examine the candidate's commits, but also examine the frequency
with which they reviewed others' commits, and examine the candidate's reaction to reviews
of their own commits. In the project's issue tracker, how often did the candidate respond con-
structively to incoming bug reports or contribute useful information to a bug ticket? Visit a

17Brian Fitzpatrick has written about the usefulness of having an open source résumé in two articles, The Virtual Re-
ferral (https://web.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onlamp/2005/07/14/osdeveloper-
s.html) and The Virtual Internship (https://web.archive.org/web/20180325231558/http://www.onlamp.com/pub/a/on-
lamp/2005/08/01/opensourcedevelopers.html).

157

https://web.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onlamp/2005/07/14/osdevelopers.html
https://web.archive.org/web/20171203195720/http://www.onlamp.com/pub/a/onlamp/2005/07/14/osdevelopers.html
https://web.archive.org/web/20180325231558/http://www.onlamp.com/pub/a/onlamp/2005/08/01/opensourcedevelopers.html
https://web.archive.org/web/20180325231558/http://www.onlamp.com/pub/a/onlamp/2005/08/01/opensourcedevelopers.html

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
threaded view of the project's discussion forums and see how often the candidate's posts were
responded to, and what the general tone of the responses was. Someone who consistently
causes negative reactions from others in the project may have social problems as a collabora-
tor, which is important to know independently of their technical ability.

If the candidate is applying for a position that would involve working on an open source
project, but seems to have little or no open source experience themselves, this is not neces-
sarily a showstopper, but it's a sign that you should ask some probing questions, and that you
should expect some ramp-up time if you hire them. If the candidate is young and inexperi-
enced in general, then lack of participation in open source is easy to understand. However,
if the candidate has been a programmer for a while, and especially if they already have ex-
perience as a user of some of the open source software you'd be hiring them to work on, and
yet they have never participated much in that project except to download and use it, then you
should ask them questions about why. There is nothing wrong with being uninvolved as a
participant in software that one uses. However, if you're hiring someone to be a participant in
a project, and they already had a chance to be and chose not to, that could imply a lack of in-
trinsic motivation to participate and may indicate that this person's temperament is not what
you're looking for. Or there could be other reasons — for example, the candidate's prior man-
agement forbade them from participating. Whatever the reasons are, you should make sure
you find out.

Hiring for Influence
It is very common for companies to hire an open source developer precisely because of her
existing position in an open source project. She may be the founder or leader of the project,
or may just have commit access,18 but either way her ability to get things done in the up-
stream community is part of her value as a prospective employee; often, it is just as impor-
tant as raw technical skill.

As noted in the section called “The Economics of Open Source” [116], there is nothing
wrong with purchasing influence in this way, as long as the employer understands that the
new employee will have dual loyalty. It is inappropriate to ask the employee to take actions
that would harm her standing in the project. The employee's manager needs to be sensitive
to this, and to let the employee know that the door is open for discussion and pushback if she
ever feels she's being put into such a situation (hence the importance of managers who un-
derstand open source, as described in the section called “The Key Role of Middle Manage-
ment” [154]). It is perfectly fine for the employee to promote the company's technical in-
terests in the project, and to do so openly, as long as the proposals are compatible with the
project's overall goals and the company provides resources to support those proposals in a
way that's sustainable for the project.

18See the section called “Committers” [259].

158

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Remember that influence in an upstream project is usually not transferable to some other
employee. Position and influence travel with the person, not with the employer. There are
occasional exceptions to this, e.g., in corporate-driven projects where the balance of power
among competitors is especially important, or in standards bodies with formal organization-
al representation policies. In these cases, a governance committee seat may be reserved for a
certain company, and the company gets to designate who sits in that seat. But even then, in-
formal influence still tends to matter a lot, and individuals may not be truly interchangeable
in practice.

This makes the recommendations in the section called “Hire for the Long Term” [123]
all the more important. When an employee holds a position of influence in an open source
project that is strategically important to your company, that employee has a pretty good bar-
gaining position.

Since that kind of employee is likely to be with you for the long term, try to take advantage
of it by having her help onboard others into open source projects. Nithya Ruff, then Director
of Open Source Strategy at Western Digital, told me that when her company acquired anoth-
er company that had a history of working on certain strategically important (to the acquirer)
open source projects, the engineering team that came with the acquisition became a strong
influence inside the newly combined company. The developers had good reputations in the
upstream projects, and the new management not only made sure they were able to contin-
ue working in those projects, but brought them into a company-wide open source working
group to help other engineers get involved in upstream maintenance too.

Evaluating Open Source Projects
Although this book is mainly about how to launch and run new open source projects, that
topic is inextricably linked to the problem of evaluating existing open source projects. You
can't know whether you need to start a new project until you've evaluated what's out there (as
explained in the section called “But First, Look Around” [16]). Furthermore, even in a new
project, you'll usually still be building on existing open source components, and will often
be in the position of choosing between different projects that implement the same basic func-
tionality. That is not just a technical choice; it's also about social health and general level of
project maturity. How large and diverse are their developer communities? Do they get new
contributors on a regular basis? Do they handle incoming bug reports in a reasonable way?
Do they make stable releases frequently enough for your needs?

Evaluating open source projects is an art, not a science. However, there are some shortcuts
that experienced people use. Below is what has worked for me. By "worked", I mean that
when I have applied these evaluation techniques to a project and then checked in with that
project months or years later, I have generally found its current status to be in line with what
the evaluation predicted.

159

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
Look at bug tracker activity first.

The most reliable reflections of project health can usually be found in the bug tracker.
Look at the rate of issue filings and the number of unique filers (because that's a proxy
for the size and level of engagement of the user base). Look also at how often project de-
velopers respond in bug tickets, and at how they respond: are they constructive? Do they
interact well with both the reporter and with other developers? Is it always the same de-
veloper responding, or is responsiveness well-distributed throughout the development
team? Are they inviting technically promising reporters to try becoming contributors?

More bug reports is better, by the way (as discussed in the section called “Version Con-
trol and Bug Tracker Access” [25]). The rate at which bug reports are closed is not as
important as you might think; in a healthy project with an active user base, bug reports
are often filed faster than the development team can close them, especially when the
user base is growing. The relevant signal is not the rate of resolution, but how project
developers respond to and organize the influx of reports.

Measure commit diversity, not commit rate.

Look at the distribution of commits across committers, not just at the raw frequency
of commits. Does the project have a variety of people working together in a sustained
way? Too often, evaluators look just at the commit rate, but that rate isn't very informa-
tive — knowing the number of commits per week could just tell you that someone keeps
making typos and then correcting them in new commits. If you have time to look at the
content of individual commits, then look at how often one developer's commit is a re-
sponse to (i.e., refers to) some other developer's previous commit. This tells you that
group code review is going on, and the more of that you see, the better the project is do-
ing.

Evaluate organizational diversity.

In addition to looking for a variety of individual identities, see if you can tell how many
different organizations are participating in the project — in particular, commercial orga-
nizations. If a number of different sources of money are all investing in a project, that's a
sign that that project is going to be around for the long term. (See also the discussion of
"bus factor" in Chapter 4, Social and Political Infrastructure [102].)

Discussion forums.

If the project has discussion forums, scan them quickly looking for signs of a function-
al community. Specifically, whenever you see a long thread, spot check responses from
core developers coming late in the thread. Are they summarizing constructively, or tak-
ing steps to bring the thread to a decision while remaining polite? If you see a lot of

160

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
flame wars going on, that can be a sign that energy is going into argument instead of into
development.

News, announcements, and releases.

Any project that is functioning well will usually have made announcements within the
past few months. Check the project's front page, news feed, Twitter or other microblog
accounts, etc. If things are quiet on stage, they're probably quiet backstage too.

This is just a brief introduction to the art of evaluating projects, but even using just the steps
above can save you a lot of trouble. I have found them particularly useful when evaluating
the two sides of a recent fork.19 Even in a recent fork, it is often possible to tell, just by look-
ing at some of the signals described above, which side will flourish over the long term.

Crowdfunding and Bounties
Perhaps unfairly, I will group crowdfunding campaigns and bounty-based development in-
centives together here, not because they are the same thing, but because to the extent that
they are problematic as ways of funding free software development, their problems are simi-
lar.

Crowdfunding refers to many funders — often mostly individuals — coming together to
fund a particular piece of development. Crowdfunding campaigns generally fall into two
categories: "all or nothing", meaning that each funder pledges money toward a total thresh-
old and the pledges are collected only if the threshold is met, or "keep it all", which is es-
sentially traditional donation: funds go immediately to the recipient whether or not a stated
goal amount is ever met. https://goteo.org/ and https://kickstarter.com/ are probably the best-
known examples of all-or-nothing crowdfunding services, though there are many others (I
like Goteo because their platform is itself free software, and because it is meant specifically
for freely-licensed projects, whereas Kickstarter does not take a position on restrictiveness of
licensing). There are also sites like https://www.indiegogo.com/ that support both models.20

Bounties are one-time rewards for completing specific tasks, such as fixing a particular bug
or implementing a new feature. Bounties are often offered directly by the interested par-
ties, since there is no need for a pledge-collecting system, but the site https://www.boun-
tysource.com/ also serves as a clearinghouse for open source development bounties.

While both crowdfunding and bounties have funded some open source work, they have not
been a major economic force compared to contracted or salaried development. This does not
mean you shouldn't consider them: depending on the problem you're trying to solve, and on

19That is, a "hard fork"; see the section called “"Development Forks" versus "Hard Forks"” [266]
20https://en.wikipedia.org/wiki/Comparison_of_crowdfunding_services.

161

https://goteo.org/
https://kickstarter.com/
https://www.indiegogo.com/
https://www.bountysource.com/
https://www.bountysource.com/
https://en.wikipedia.org/wiki/Comparison_of_crowdfunding_services

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
the shapes of solutions you're willing to accept, crowdfunding or bounty funding might be
a good answer. The problem they share is that they are structured around development as a
one-time event rather than as an ongoing process. This would be problematic for any kind of
software development, but is especially so for open source development, which if anything
is is optimized more for low-intensity, long-term investment rather than for high-intensity
burst investment. Both crowdfunding campaigns and bounty prizes are more compatible with
high-intensity, one-time bursts of activity, and do not provide for ongoing maintenance or in-
vestment past the completion of the campaign goal or prize condition.21

A crowdfunding campaign can sometimes be a good way to get a project launched, but gen-
erally is not a way to fund development after the initial launch. Successive crowdfunding
campaigns for later stages of development or for releases will inevitably tire out even a will-
ing and supportive audience. There is a reason why long-running charities, for example the
public radio network in the United States, seek to develop sustaining funders (euphemistical-
ly called "members" despite rarely having any governance role) to provide a long-term, sta-
ble revenue stream, and then raise funds for specific one-time efforts separately from that.

If you do launch a crowdfunding campaign, take a close look at how other open source
projects have run theirs. There are a number of useful techniques that can be learned from
the successful ones. For example, most campaign sites have a mechanism for offering dif-
ferent rewards to backers at different monetary levels. You could offer a mention in a SUP-
PORTERS file in the project, and perhaps at higher levels a mention on a thank-you page on
the project's web site. But more creatively — I first heard this idea from Michael Bernstein,
and used it — you can offer to dedicate a commit to each backer at or above a certain level,
by thanking the backer directly in the commit's log message. The nice thing about this is that
it's decentralized and easy to administer: any developer on the project can help fulfill that re-
ward. Individual developers can also offer free or discounted consulting about the project
as a reward. However, if you are one of those developers, be careful not to sell too much of
your time: the point of the campaign is to raise funds for development, not to turn the devel-
opment team into a consulting team.

One thing that many crowdfunding campaigns do that I think is not appropriate for free soft-
ware projects is to sell early access. That is, one of the rewards will be a "sneak preview"
or "beta access" to in-progress versions, before the public release. The problem with this is
that, for open source projects, the public is supposed to already have access to in-progress
work. Access to an open source project should be limited by the time and interest of the par-
ties seeking the information, not by the project. So learn what you can from other crowdfund-
ing campaigns, but remember that some of the techniques used by campaigns for non-free-

21One service trying to solve that problem is https://snowdrift.coop/, which aims to provide sustainable funding for
freely-licensed works using a carefully designed matching pledge model. Whether Snowdrift will succeed is unknowable
as of this writing in mid-2015, since the service is still in a preliminary stage, but I am watching it with interest. Snow-
drift also did a thorough survey, in the Fall of 2013, of funding platforms for free software, and posted their results at
https://snowdrift.coop/p/snowdrift/w/en/othercrowdfunding; it's worth a read if you're interested in this topic.

162

https://snowdrift.coop/
https://snowdrift.coop/p/snowdrift/w/en/othercrowdfunding

Organizations and Mon-
ey: Businesses, Non-

Profits, and Governments
software products may not be suitable for an open source project that wants to keep the good
will of its users and development community.

Finally, a word of caution: if your project accepts donations, do some public planning of how
the money will be used before it comes in. Discussions about how to allocate money tend
to go a lot more smoothly when held before there's actual money to spend; also, if there are
significant disagreements, it's better to find that out when the money is still theoretical than
when it's real.

163

Chapter 6. Communications
An open source project must do many things: recruit users and developers, encourage new
contributors to become more deeply involved, allow free-flowing discussion while still
reaching necessary decisions, maintain a body of knowledge and convention that guides
newcomers and experts alike, and, of course, produce working software.

Coordinating people to accomplish all this together requires many techniques, and because
open source collaboration is ultimately based on software code, most of those techniques re-
volve around the written word. We'll start there.

Written Culture
The ability to write clearly is one of the most important skills one can have in an open source
environment. In the long run it may matter more than programming talent. A great program-
mer with lousy communications skills can get only one thing done at a time, and even then
may have trouble convincing others to pay attention. But a mediocre programmer with good
communications skills can coordinate and persuade many people to do many different things,
and thereby have a significant effect on a project's direction and momentum.

There does not seem to be much correlation, in either direction, between the ability to write
good code and the ability to communicate with one's fellow human beings. There is some
correlation between programming well and describing technical issues well, but describing
technical issues is only one part of the communications in a project. Much more important is
the ability to empathize with one's audience, to see one's own posts and comments as others
see them, and to cause others to see their own posts with similar objectivity. Equally impor-
tant is noticing when a given medium or communications method is no longer working well,
perhaps because it doesn't scale as the number or diversity of users increases, and taking the
time to do something about it.

All of this is obvious in theory. What makes it hard in practice is that free software devel-
opment environments are bewilderingly diverse both in audiences and in communications
mechanisms. Should a given thought be expressed in a post to the mailing list, as an annota-
tion in the bug tracker, or as a comment in the code? When answering a question in a public
forum, how much knowledge can you assume on the part of the reader, given that "the read-
er" is not only the person who asked the question in the first place, but all those who might
see your response? How can the developers stay in constructive contact with the users, with-
out getting swamped by feature requests, spurious bug reports, and general chatter? How do
you tell when a communications medium has reached the limits of its capacity, and what do
you do about it?

164

Communications

Solutions to these problems are usually partial, because any particular solution is eventual-
ly made obsolete by project growth or by changes in project structure. They are also often ad
hoc, because they're improvised responses to dynamic situations. All participants need to be
aware of when and how communications can become bogged down, and be involved in solu-
tions. Helping people do this is a big part of managing an open source project.

The sections that follow discuss both how to conduct your own communications, and how to
make maintenance of communications mechanisms a priority for everyone in the project.1

You Are What You Write
Consider this: most of what others know about you on the Internet comes from what you
write. You may be brilliant, perceptive, and charismatic in person — but if your emails are
rambling and unstructured, people will assume that's the real you. Or perhaps you are ram-
bling and unstructured in person, but no one need ever know that if your posts are lucid and
informative.

Devoting some care to your writing will pay off hugely. Long-time free software hacker Jim
Blandy tells the following story:

Back in 1993, I was working for the Free Software Foundation, and we
were beta-testing version 19 of GNU Emacs. We'd make a beta release
every week or so, and people would try it out and send us bug reports.
There was this one guy whom none of us had met in person but who did
great work: his bug reports were always clear and led us straight to the
problem, and when he provided a fix himself, it was almost always right.
He was top-notch.

Now, before the FSF can use code written by someone else, we have them
do some legal paperwork to assign their copyright interest to that code to
the FSF. Just taking code from complete strangers and dropping it in is a
recipe for legal disaster.

So I emailed the guy the forms, saying, "Here's some paperwork we need,
here's what it means, you sign this one, have your employer sign that one,
and then we can start putting in your fixes. Thanks very much."

He sent me back a message saying, "I don't have an employer."

1There has been some interesting academic research on this topic; for example, see Group Awareness in Distributed
Software Development by Gutwin, Penner, and Schneider. This paper was online for a while, then unavailable, then on-
line again at http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf. So try there first, but be prepared to
use a search engine if it moves again.

165

http://www.st.cs.uni-sb.de/edu/empirical-se/2006/PDFs/gutwin04.pdf

Communications

So I said, "Okay, that's fine, just have your university sign it and send it
back."

After a bit, he wrote me back again, and said, "Well, actually... I'm thirteen
years old and I live with my parents."

Because that kid didn't write like a thirteen-year-old, no one knew that's what he was. Fol-
lowing are some ways to make your writing give a good impression too.

Structure and Formatting
Don't fall into the trap of writing everything as though it were a cell phone text message.
Write in complete sentences, capitalizing the first word of each sentence, and use paragraph
breaks where needed. This is most important in emails and other composed writings. In chat
rooms or similarly ephemeral forums, it's generally okay to leave out capitalization, use com-
pressed forms of common expressions, etc. Just don't carry those habits over into more for-
mal, persistent forums. Emails, documentation, bug reports, and other pieces of writing that
are intended to have a permanent life should be written using standard grammar and spelling,
and have a coherent narrative structure. This is not because there's anything inherently good
about following arbitrary rules, but rather that these rules are not arbitrary: they evolved into
their present forms because they make text more readable, and you should adhere to them for
that reason. Readability is desirable not only because it means more people will understand
what you write, but because it makes you look like the sort of person who takes the time to
communicate clearly: that is, someone worth paying attention to.

Good grammar also minimizes ambiguity. This is especially important in technical writing,
where plausible alternatives will often be juxtaposed, and the distinction between cause and
effect may not be immediately clear from context alone. A grammatical structure that repre-
sents things in precisely the way the writer intended helps everyone avoid confusion.

For email in particular, experienced open source developers have settled on certain format-
ting conventions:

• Send plain text mails only, not HTML, RichText, or other formats that might get mangled
by certain online archives or text-based mail readers. When including screen output, snip-
pets of code, or other preformatted text, offset it clearly, so that even a lazy eye can easily
see the boundaries between your prose and the material you're quoting. If the overall struc-
ture of your post is still visible from five meters away, you're doing it right.

• For preformatted blocks, such as quoted code or error messages, try to stay under 80
columns wide, which has become the de facto standard terminal width (that is, some peo-
ple may use wider displays, but no one uses a narrower one). By making your lines a little

166

Communications

less than 80 columns, you leave room for a few levels of quoting characters to be added in
others' replies without forcing a rewrapping of your preformatted text.

• When quoting someone else's mail, insert your responses where they're most appropriate,
at several different places if necessary, and trim off the parts of their mail you didn't use. If
you're writing a quick response that applies to their entire post, and your response will be
sensible even to someone who hasn't read the original, then it's okay to top-post (that is, to
put your response above the quoted text of their mail); otherwise, quote the relevant por-
tion of the original text first, followed by your response.

• Construct the Subject lines of new mails carefully. The Subject line is the most important
line in your mail, because it allows each other person in the project to decide whether or
not to read more. Modern mail reading software organizes groups of related messages into
threads, which can be defined not only by a common Subject, but by various other head-
ers (which are sometimes not displayed). It follows that if a thread starts to drift to a new
topic, you can — and should — adjust the Subject line accordingly when replying. The
thread's integrity will be preserved, due to those other headers, but the new Subject will
help people looking at an overview of the thread know that the topic has drifted. Likewise,
if you really want to start a new topic, do it by posting a fresh mail, not by replying to an
existing mail and changing the Subject. Otherwise, your mail would still be grouped in
to the same thread as what you're replying to, and thus fool people into thinking it's about
something it's not. Again, the penalty would not only be the waste of their time, but the
slight dent in your credibility as someone fluent in using communications tools.

Content
Well-formatted mails attract readers, but content keeps them. No set of fixed rules can guar-
antee good content, of course, but there are some principles that make it more likely.

Make things easy for your readers. There's a ton of information floating around in any ac-
tive open source project, and readers cannot be expected to be familiar with most of it — in-
deed, they cannot always be expected to know how to become familiar. Wherever possi-
ble, your posts should provide information in the form most convenient for readers. If you
have to spend an extra two minutes to dig up the URL to a particular thread in the mailing
list archives, in order to save your readers the trouble of doing so, it's worth it. If you have
to spend an extra 5 or 10 minutes summarizing the conclusions so far of a complex thread,
in order to give people context in which to understand your post, then do so. Think of it this
way: the more successful a project is, the higher the reader-to-writer ratio will be in any giv-
en forum. If every post you make is seen by N people, then as N rises, the worthwhileness of
expending extra effort to save those people time rises with it. As people see you imposing
this standard on yourself, they will work to match it in their own communications. The result
is, ideally, an increase in the global efficiency of the project: when there is a choice between
N people making an effort and one person doing so, the project prefers the latter.

167

Communications

Don't engage in hyperbole. Exaggerating in online posts is a classic arms race. For example,
a person reporting a bug may worry that the developers will not pay sufficient attention, so
he'll describe it as a severe, showstopper problem that is preventing him (and all his friends/
coworkers/cousins) from using the software productively, when it's actually only a mild an-
noyance.

But exaggeration is not limited to users — programmers often do the same thing during tech-
nical debates, particularly when the disagreement is over a matter of taste rather than correct-
ness:

"Doing it that way would make the code totally unreadable. It'd be a main-
tenance nightmare, compared to J. Random's proposal..."

The same sentiment would actually be stronger if phrased less sharply:

"That works, but it's less than ideal in terms of readability and maintain-
ability, I think. J. Random's proposal avoids those problems because it..."

You will not be able to rid the project of hyperbole completely, and in general it's not nec-
essary to do so. Compared to other forms of miscommunication, hyperbole is not globally
damaging — it hurts mainly the perpetrator. The recipients can compensate, it's just that the
sender loses a little more credibility each time. Therefore, for the sake of your own influence
in the project, try to err on the side of moderation. That way, when you do need to make a
strong point, people will take you seriously.

Edit twice. For any message longer than a medium-sized paragraph, reread it from top to bot-
tom before sending it but after you think it's done the first time. This is familiar advice to
anyone who's taken a composition class, but it's especially important in online discussion.
Because the process of online composition tends to be highly discontinuous (in the course of
writing a message, you may need to go back and check other mails, visit certain web pages,
run a command to capture its output, etc), it's especially easy to lose your sense of narra-
tive place. Messages that were composed discontinuously and not checked before being sent
are often recognizable as such, much to the chagrin (or so one would hope) of their authors.
Take the time to review what you send. The more your posts hold together structurally, the
more they will be read by others.

Tone
After writing thousands of messages, you will probably find your style tending toward the
terse. This seems to be the norm in most technical forums, and there's nothing wrong with
it per se. A degree of terseness that would be unacceptable in normal social interactions is
simply the default for free software hackers. Here's a response I once drew on a mailing list
about some free content management software, quoted in full:

168

Communications

Can you possibly elaborate a bit more on exactly what problems you ran
into, etc?

Also:

What version of Slash are you using? I couldn't tell from your original
message.

Exactly how did you build the apache/mod_perl source?

Did you try the Apache 2.0 patch that was posted about on slashcode.com?

Shane

Now that's terse! No greeting, no sign-off other than his name, and the message itself is just
a series of questions phrased as compactly as possible. His one declarative sentence was an
implicit criticism of my original message. And yet, I was happy to see Shane's mail, and
didn't take his terseness as a sign of anything other than him being a busy person. The mere
fact that he was asking questions, instead of ignoring my post, meant that he was willing to
spend some time on my problem.

Will all readers react positively to this style? Not necessarily; it depends on the person and
the context. For example, if someone has just posted acknowledging that he made a mis-
take (perhaps he wrote a bug), and you know from past experience that this person tends to
be a bit insecure, then while you may still write a compact response, you should make sure
to leaven it with some sort of acknowledgement of his feelings. The bulk of your response
might be a brief, engineer's-eye analysis of the situation, as terse as you want. But at the end,
sign off with something indicating that your terseness is not to be taken as coldness. For ex-
ample, if you've just given reams of advice about exactly how the person should fix the bug,
then sign off with "Good luck, <your name here>" to indicate that you wish him well and are
not mad. A strategically placed smiley face or other emoticlue can often be enough to reas-
sure an interlocutor, too.

It may seem odd to focus as much on the participant's feelings as on the surface of what they
say, but, to put it baldly, feelings affect productivity. Feelings are important for other rea-
sons too, but even confining ourselves to purely utilitarian grounds, we may note that unhap-
py people write worse software and tackle fewer bugs. Given the restricted nature of most
electronic media, though, there will often be no overt clue about how a person is feeling. You
will have to make an educated guess based on a) how most people would feel in that situa-
tion, and b) what you know of this particular person from past interactions.

Some people prefer a more hands-off attitude, and simply deal with everyone at face value,
the idea being that if a participant doesn't say outright that he feels a particular way, then one
has no business treating him as though he does. I don't buy this approach, for a couple of rea-

169

Communications

sons. One, people don't behave that way in real life, so why would they online? Two, since
most interactions take place in public forums, people tend to be even more restrained in ex-
pressing emotions than they might be in private. To be more precise, they are often willing
to express emotions directed at others, such as gratitude or outrage, but not emotions directed
inwardly, such as insecurity or pride. Yet most humans work better when they know that oth-
ers are aware of their state of mind. By paying attention to small clues, you can usually guess
right most of the time, and motivate people to stay involved to a greater degree than they oth-
erwise might.

I don't mean, of course, that your role is to be a group therapist, constantly helping everyone
to get in touch with their feelings. But by paying careful attention to long-term patterns in
people's behavior, you will begin to get a sense of them as individuals even if you never meet
them face-to-face. And by being sensitive to the tone of your own writing, you can have a
surprising amount of influence over how others feel, to the ultimate benefit of the project.

Recognizing Rudeness
One of the defining characteristics of open source culture is its distinctive notions of what
does and does not constitute rudeness. While the conventions described below are not unique
to free software development, nor even to software in general — they would be familiar to
anyone working in mathematics, the hard sciences, or engineering disciplines — free soft-
ware, with its porous boundaries and constant influx of newcomers, is an environment where
these conventions are especially likely to be encountered by people unfamiliar with them.
(This is one reason why it's good to be generous when trying to figure out whether someone
has violated the code of conduct, in a project that has one — see the section called “Codes of
Conduct” [40].)

Let's start with the things that are not rude:

Technical criticism, even when direct and unpadded, is not rude. Indeed, it can be a form of
flattery: the critic is saying, by implication, that the recipient is worth taking seriously — is
worth spending some time on. That is, the more viable it would have been to simply ignore
someone's post, the more of a compliment it becomes to take the time to criticize it instead
(unless the critique descends into an ad hominem attack or some other form of obvious rude-
ness, of course).

Blunt, unadorned questions, such as Shane's questions to me in the previously quoted email,
are not rude either. Questions that in other contexts might seem cold, rhetorical, or even
mocking, are often intended seriously, and have no hidden agenda other than eliciting in-
formation as quickly as possible. The famous technical support question "Is your comput-
er plugged in?" is a classic example of this. The support person really does need to know if
your computer is plugged in, and after the first few days on the job, has gotten tired of pre-

170

Communications

fixing her question with polite blandishments ("I beg your pardon, I just want to ask a few
simple questions to rule out some possibilities. Some of these might seem pretty basic, but
bear with me..."). At this point, she doesn't bother with the padding anymore, she just asks
straight out: is it plugged in or not? Equivalent questions are asked all the time on free soft-
ware mailing lists. The intent is not to insult the recipient, but to quickly rule out the most
obvious and most common explanations. Recipients who understand this and react accord-
ingly win points for taking a broad-minded view without prompting. But recipients who react
badly must not be reprimanded, either. It's just a collision of cultures, not anyone's fault. Ex-
plain amiably that your question (or criticism) had no hidden meanings; it was just meant to
get (or transmit) information as efficiently as possible, nothing more.

So what is rude?

By the same principle under which detailed technical criticism is a form of flattery, failure
to provide quality criticism can be a kind of insult. I don't mean simply ignoring someone's
work, be it a proposal, code change, new ticket filing, or whatever. Unless you explicitly
promised a detailed reaction in advance, it's usually okay to simply not react at all. People
will assume you just didn't have time to say anything. But if you do react, don't skimp: take
the time to really analyze things, provide concrete examples where appropriate, dig around
in the archives to find related posts from the past, etc. Or if you don't have time to put in that
kind of effort, but still need to write some sort of brief response, then state the shortcoming
openly in your message ("I think there's a ticket filed for this, but unfortunately didn't have
time to search for it, sorry"). The main thing is to explicitly recognize the existence of the
cultural norm, either by fulfilling it or by openly acknowledging that one has fallen short this
time. Either way, the norm is strengthened. But failing to meet that norm while at the same
time not explaining why you failed to meet it is like saying the topic (and those participating
in it) was not worth much of your time — that your time is more valuable than theirs. Better
to show that your time is valuable by being terse than by being lazy.

There are many other forms of rudeness, of course, but most of them are not specific to free
software development, and common sense is a good enough guide to avoid them. See also
the section called “Nip Rudeness in the Bud” [39], if you haven't already.

Face
There is a region in the human brain devoted specifically to recognizing faces. It is known
informally as the "fusiform face area" and apparently its capabilities are at least partly in-
born, not learned. It turns out that recognizing individual people is such a crucial survival
skill that we have evolved specialized hardware to do it.

Internet-based collaboration is therefore psychologically odd, because it involves tight coop-
eration between human beings who almost never get to identify each other by the most natur-
al, intuitive methods: facial recognition first of all, but also sound of voice, posture, etc.

171

Communications

To compensate for this, try to use a consistent screen name everywhere. Ideally it would
be the front part of your email address (the part before the @-sign), your chat handle, your
repository committer name, your ticket tracker username, and so on. This name is your on-
line "face": a short identifying string that serves some of the same purpose as your real face,
although it does not, unfortunately, stimulate the same built-in hardware in the brain.

The screen name should be some intuitive permutation of your real name (mine, for example,
is "kfogel"). In some situations it will be accompanied by your full name anyway, for exam-
ple in mail headers:

From: "Karl Fogel" <kfogel@whateverdomain.com>

Actually, there are two things going on in that example. As mentioned earlier, the screen
name matches the real name in an intuitive way. But also, the real name is real. That is, it's
not some made-up appellation like:

From: "Wonder Hacker" <wonderhacker@whateverdomain.com>

There's a famous cartoon by Paul Steiner, from the July 5, 1993 issue of The New Yorker,
that shows one dog logged into a computer terminal, looking down and telling another con-
spiratorially: "On the Internet, nobody knows you're a dog." This kind of thought probably
lies behind a lot of the self-aggrandizing, meant-to-be-hip online identities people give them-
selves — as if calling oneself "Wonder Hacker" will actually cause people to believe one is a
wondrous hacker. But the fact remains: even if no one knows you're a dog, you're still a dog.
A fantastical online identity never impresses readers. Instead, it makes them think you're
more into image than substance, or that you're simply insecure. Use your real name for all in-
teractions, or if for some reason you prefer pseudonymity, then make up a name and use it
consistently.

If you have an official title (e.g., "doctor", "professor", "director"), don't flaunt it, nor even
mention it except when it's directly relevant to the conversation. Hackerdom in general, and
free software culture in particular, tends to view title displays as exclusionary and as a sign
of insecurity. It's okay if your title appears as part of a standard signature block at the end of
every mail you send, but never use it as a tool to bolster your position in a discussion — the
attempt is guaranteed to backfire. You want folks to respect the person, not the title.

Speaking of signature blocks: keep them small and tasteful, or better yet, nonexistent. Avoid
large legal disclaimers tacked on to the end of every mail, especially when they express sen-
timents incompatible with participation in a free software project. For example, the follow-
ing classic of the genre appears at the end of every post a particular user makes to a certain
project mailing list:

172

Communications

IMPORTANT NOTICE

If you have received this e-mail in error or wish to read our e-mail dis-
claimer statement and monitoring policy, please refer to the statement be-
low or contact the sender.

This communication is from Deloitte & Touche LLP. Deloitte & Touche
LLP is a limited liability partnership registered in England and Wales with
registered number OC303675. A list of members' names is available for
inspection at Stonecutter Court, 1 Stonecutter Street, London EC4A 4TR,
United Kingdom, the firm's principal place of business and registered of-
fice. Deloitte & Touche LLP is authorised and regulated by the Financial
Services Authority.

This communication and any attachments contain information which is
confidential and may also be privileged. It is for the exclusive use of the
intended recipient(s). If you are not the intended recipient(s) please note
that any form of disclosure, distribution, copying or use of this communi-
cation or the information in it or in any attachments is strictly prohibited
and may be unlawful. If you have received this communication in error,
please return it with the title "received in error" to IT.SECURITY.UK@de-
loitte.co.uk then delete the email and destroy any copies of it.

E-mail communications cannot be guaranteed to be secure or error free, as
information could be intercepted, corrupted, amended, lost, destroyed, ar-
rive late or incomplete, or contain viruses. We do not accept liability for
any such matters or their consequences. Anyone who communicates with
us by e-mail is taken to accept the risks in doing so.

When addressed to our clients, any opinions or advice contained in this e-
mail and any attachments are subject to the terms and conditions expressed
in the governing Deloitte & Touche LLP client engagement letter.

Opinions, conclusions and other information in this e-mail and any attach-
ments which do not relate to the official business of the firm are neither
given nor endorsed by it.

For someone who's just showing up to ask a question now and then, that huge disclaimer
looks a bit silly but probably doesn't do any lasting harm. However, if this person wanted
to participate actively in the project, that legal boilerplate would start to have a more in-
sidious effect. It would send at least two potentially destructive signals: first, that this per-
son doesn't have full control over his tools — he's trapped inside some corporate mailer that
tacks an annoying message to the end of every email, and he hasn't got any way to route

173

Communications

around it — and second, that he has little or no organizational support for his free software
activities. True, the organization has apparently not banned him outright from posting to pub-
lic lists, but it has made his posts look distinctly unwelcoming, as though the risk of letting
out confidential information must trump all other priorities.

If you work for an organization that insists on adding such signature blocks to all outgoing
mail, and you can't get the policy changed, then consider using your personal email account
to post, even if you're being paid by your employer for your participation in the project.

Avoiding Common Pitfalls
Certain anti-patterns appear again and again in threaded discussion forums. Below are the
ones that seem to come up most often in open source project forums, and some advice on
how to handle them.

Don't Post Without a Purpose
A common pitfall in online project participation is to think that you have to respond to every-
thing. You don't. First of all, there will usually be more threads going on than you can keep
track of, at least after the project really gets going. Second, even in the threads that you have
decided to engage in, much of what people say does not require a response. Development fo-
rums in particular tend to be dominated by four kinds of messages:

1. Messages asking a question

2. Messages proposing something non-trivial

3. Messages expressing support or opposition to something someone else has said

4. Summing-up messages

None of these inherently requires your response, particularly if you can be fairly sure, based
on watching the thread so far, that someone else is likely to say what you would have said
anyway. (If you're worried that you'll be caught in a wait-wait loop because all the others are
using this tactic too, don't be; there's almost always someone out there who'll feel like jump-
ing into the fray.) A response should be motivated by a definite purpose. Ask yourself first:
do you know what you want to accomplish? And second: will it not get accomplished unless
you say something?

Two good reasons to add your voice to a thread are a) when you see a flaw in a proposal and
suspect that you're the only one who sees it, and b) when you see that miscommunication is

174

Communications

happening between others, and know that you can fix it with a clarifying post. It's also gener-
ally fine to post just to thank someone for doing something, or to say "Me too!" if you want
to strengthen a developing consensus, because a reader can tell right away that such posts
do not require any response or further action, and therefore the mental effort demanded by
the post ends cleanly when the reader reaches the last line of the mail. But even then, think
twice before saying something; it's always better to leave people wishing you'd post more
than wishing you'd post less.2

Productive vs Unproductive Threads
On a busy mailing list, you have two imperatives. One, obviously, is to figure out what you
need to pay attention to and what you can ignore. The other is to behave in a way that avoids
causing noise: not only do you want your own posts to have a high signal/noise ratio, you
also want them to be the sorts of messages that stimulate other people to either post with a
similarly high signal/noise ratio, or not post at all.

To see how to do that, let's consider the context in which it is done. What are some of the
hallmarks of unproductive threads?

• Arguments that have already been made start to be repeated in the same thread, as though
the poster thinks no one heard them the first time.

• Increasing levels of hyperbole and intensity as the stakes get smaller and smaller.

• A majority of comments coming from people who do little or nothing in the project, while
the people who tend to get things done are silent.

• Many ideas discussed without clear proposals ever being made. (Of course, any interesting
idea starts out as an imprecise vision; the important question is what direction it goes from
there. Does the thread seem to be turning the vision into something more concrete, or is it
spinning off into sub-visions, side-visions, and ontological disputes?)

Just because a thread is not productive at first doesn't mean it's a waste of time. It might be
about an important topic, in which case the fact that it's not making any headway is all the
more troublesome.

Guiding a thread toward usefulness without being pushy is an art. It won't work to simply ad-
monish people to stop wasting their time, or to ask them not to post unless they have some-
thing constructive to say. You may, of course, think these things privately, but if you say
them out loud then you will be offensive — and ineffective. Instead, you have to suggest

2The second half of Poul-Henning Kamp's "bikeshed" post, referenced from the section called “The Smaller the Topic,
the Longer the Debate” [177], offers some further thoughts about how to behave on a busy mailing list.

175

Communications

conditions for further progress: give people a route, a path to follow that leads to the results
you want, yet without sounding like you're dictating conduct. The distinction is largely one
of tone. For example, this is bad:

This discussion is going nowhere. Can we please drop this topic until
someone has a patch to implement one of these proposals? There's no rea-
son to keep going around and around saying the same things. Code speaks
louder than words, folks.

Whereas this is good:

Several proposals have been floated in this thread, but none have had all
the details fleshed out, at least not enough for an up-or-down vote. Yet
we're also not saying anything new now; we're just reiterating what has
been said before. So the best thing at this point would probably be for fur-
ther posts to contain either a complete specification for the proposed be-
havior, or a patch. Then at least we'd have a definite action to take (i.e.,
get consensus on the specification, or apply and test the patch).

Contrast the second approach with the first. The second way does not draw a line between
you and the others, or accuse them of taking the discussion into a spiral. It talks about "we",
which is important whether or not you actually participated in the thread before now, because
it reminds everyone that even those who have been silent thus far still have a stake in the
thread's outcome. It describes why the thread is going nowhere, but does so without pejora-
tives or judgements — it just dispassionately states some facts. Most importantly, it offers a
positive course of action, so that instead of people feeling like discussion is being closed off
(a restriction against which they can only be tempted to rebel), they will feel as if they're be-
ing offered a way to take the conversation to a more constructive level, if they're willing to
make the effort. This is a standard that most productive people will naturally want to meet.

Sometimes you'll be equally happy if a thread either makes it to the next level of construc-
tiveness or just goes away. The purpose of your post, then, is to make it do one or the other.
If you can tell from the way the thread has gone so far that no one is actually going to take
the steps you suggested, then your post effectively shuts down the thread without seeming to
do so. Of course, there isn't any foolproof way to shut down a thread, and even if there were,
you wouldn't want to use it. But asking participants to either make visible progress or stop
posting is perfectly defensible, if done diplomatically. Be wary of quashing threads prema-
turely, however. Some amount of speculative chatter can be productive, depending on the
topic, and asking for it to be resolved too quickly will stifle the creative process, as well as
make you look impatient.

Don't expect any thread to stop on a dime. There will probably still be a few posts after
yours, either because mails got crossed in the pipe, or because people want to have the last

176

Communications

word. This is nothing to worry about, and you don't need to post again. Just let the thread pe-
ter out, or not peter out, as the case may be. You can't have complete control; on the other
hand, you can expect to have a statistically significant effect across many threads.

The Smaller the Topic, the Longer the Debate
Although discussion can meander in any topic, the probability of meandering goes up as the
technical difficulty of the topic goes down. After all, the greater the technical complexity, the
fewer participants can really follow what's going on. Those who can are likely to be the most
experienced developers, who have already taken part in such discussions many times before,
and know what sort of behavior is likely to lead to a consensus everyone can live with.

Thus, consensus is hardest to achieve in technical questions that are simple to understand and
easy to have an opinion about, and in "soft" topics such as organization, publicity, funding,
etc, people can participate in those arguments forever, because there are no qualifications
necessary for doing so, no clear ways to decide (even afterward) if a decision was right or
wrong, and because simply outwaiting or outposting other discussants is sometimes a suc-
cessful tactic.

The principle that the amount of discussion is inversely proportional to the complexity of the
topic has been around for a long time, and is known informally as the Bikeshed Effect. Here
is Poul-Henning Kamp's explanation of it, from a now-famous post made to BSD developers:

It's a long story, or rather it's an old story, but it is quite short actually. C.
Northcote Parkinson wrote a book in the early 1960'ies, called "Parkinson's
Law", which contains a lot of insight into the dynamics of management.

[...]

In the specific example involving the bike shed, the other vital component
is an atomic power-plant, I guess that illustrates the age of the book.

Parkinson shows how you can go in to the board of directors and get ap-
proval for building a multi-million or even billion dollar atomic power
plant, but if you want to build a bike shed you will be tangled up in endless
discussions.

Parkinson explains that this is because an atomic plant is so vast, so expen-
sive, and so complicated that people cannot grasp it, and rather than try,
they fall back on the assumption that somebody else checked all the details
before it got this far. Richard P. Feynmann gives a couple of interesting,
and very much to the point, examples relating to Los Alamos in his books.

177

Communications

A bike shed on the other hand. Anyone can build one of those over a week-
end, and still have time to watch the game on TV. So no matter how well
prepared, no matter how reasonable you are with your proposal, somebody
will seize the chance to show that he is doing his job, that he is paying at-
tention, that he is here.

In Denmark we call it "setting your fingerprint". It is about personal pride
and prestige, it is about being able to point somewhere and say "There! I
did that." It is a strong trait in politicians, but present in most people given
the chance. Just think about footsteps in wet cement.

(Kamp's complete post is very much worth reading; see https://bikeshed.com/.)

Anyone who's ever taken regular part in group decision-making will recognize what Kamp
is talking about. However, it is usually impossible to persuade everyone to avoid painting
bikesheds. The best you can do is point out that the phenomenon exists (when you see it
happening) and persuade the senior developers — the people whose posts carry the most
weight — to drop their paintbrushes early, so at least they're not contributing to the noise.
Bikeshed painting parties will never go away entirely, but you can make them shorter and
less frequent by spreading an awareness of the phenomenon in the project's culture.

Avoid Holy Wars
A holy war is a dispute, often but not always over a relatively minor issue, which is not re-
solvable on the merits of the arguments, but about which people feel passionate enough to
continue arguing anyway in the hope that their side will prevail.

Holy wars are not quite the same as bikeshed painting. People painting bikesheds may be
quick to jump in with an opinion, but they won't necessarily feel strongly about it, and in-
deed will sometimes express other, incompatible opinions, to show that they understand all
sides of the issue. In a holy war, on the other hand, understanding the other sides is a sign of
weakness. In a holy war, everyone knows there is One Right Answer; they just don't agree on
what it is.

Once a holy war has started, it generally cannot be resolved to everyone's satisfaction. It
does no good to point out, in the midst of a holy war, that a holy war is going on. Everyone
knows that already. Unfortunately, a common feature of holy wars is disagreement on the
very question of whether the dispute is resolvable by continued discussion. Viewed from out-
side, it is clear that neither side is changing the other's mind. Viewed from inside, the oth-
er side is being obtuse and not thinking clearly, but they might come around if browbeat-
en enough. Now, I am not saying there's never a right side in a holy war. Sometimes there
is — in the holy wars I've participated in, it's always been my side, of course. But it doesn't

178

https://bikeshed.com/

Communications

matter, because there's no algorithm for convincingly demonstrating that one side or the oth-
er is right.

A common, but unsatisfactory, way people try to resolve holy wars is to say "We've already
spent far more time and energy discussing this than it's worth! Can we please just drop it?"
There are two problems with this. First, that time and energy has already been spent and
can never be recovered.3 The only question now is, how much more effort remains? If some
people feel that just a little more discussion will resolve the issue in their favor, then it still
makes sense (from their point of view) to continue.

The second problem with asking for the matter to be dropped is that this is often equivalent
to allowing one side, the status quo, to declare victory by inaction. And in some cases, the
status quo is known to be unacceptable anyway: everyone agrees that some decision must
be made, some action taken. Dropping the subject would be worse for everyone than simply
giving up the argument would be for anyone. But since that dilemma applies to all equally,
it's still possible to end up arguing forever about what to do.

So how should you handle holy wars?

The first answer is, try to set things up so they don't happen. This is not as hopeless as it
sounds:

You can anticipate certain standard holy wars: they tend to come up over programming lan-
guages, licenses (see the section called “The GPL and License Compatibility” [278]), re-
ply-to munging (see the section called “The Great Reply-to Debate” [67]), and a few other
topics. Each project usually has a holy war or two all of its own, which longtime developers
will quickly become familiar with. The techniques for stopping holy wars, or at least limit-
ing their damage, are pretty much the same everywhere. Even if you are positive your side
is right, try to find some way to express sympathy and understanding for the points the other
side is making. Often the problem in a holy war is that because each side has built its walls
as high as possible and made it clear that any other opinion is sheer foolishness, the act of
surrendering or changing one's mind becomes psychologically unbearable: it would be an ad-
mission not just of being wrong, but of having been certain and still being wrong. The way
you can make this admission palatable for the other side is to express some uncertainty your-
self — precisely by showing that you understand the arguments they are making and find
them at least sensible, if not finally persuasive. Make a gesture that provides space for a rec-
iprocal gesture, and usually the situation will improve. You are no more or less likely to get
the technical result you wanted, but at least you can avoid unnecessary collateral damage to
the project's morale.

When a holy war can't be avoided, decide early how much you care, and then be willing to
publicly give up. When you do so, you can say that you're backing out because the holy war

3 https://en.wikipedia.org/wiki/Sunk_cost#Fallacy_effect

179

https://en.wikipedia.org/wiki/Sunk_cost#Fallacy_effect

Communications

isn't worth it, but don't express any bitterness and don't take the opportunity for a last parting
shot at the opposing side's arguments. Giving up is effective only when done gracefully.

Programming language holy wars are a bit of a special case, because they are often highly
technical, yet many people feel qualified to take part in them, and the stakes are very high,
since the result may determine what language a good portion of the project's code is writ-
ten in. The best solution is to choose the language early, with buy-in from influential initial
developers, and then defend it on the grounds that it's what you are all comfortable writing
in, not on the grounds that it's better than some other language that could have been used in-
stead. Never let the conversation degenerate into an academic comparison of programming
languages; that's a death topic that you must simply refuse to be drawn into.

For more historical background on holy wars, see http://catb.org/~esr/jargon/html/H/holy-
wars.html, and the paper by Danny Cohen that popularized the term, https://www.iet-
f.org/rfc/ien/ien137.txt.

The "Noisy Minority" Effect
In any mailing list discussion, it's easy for a small minority to give the impression that there
is a great deal of dissent, by flooding the list with numerous lengthy emails. It's a bit like a
filibuster, except that the illusion of widespread dissent is even more powerful, because it's
divided across an arbitrary number of discrete posts and most people won't bother to keep
track of who said what, when. They'll just have a vague impression that the topic is very con-
troversial and wait for the fuss to die down.

The best way to counteract this effect is to point it out very clearly and provide quantitative
evidence showing how small the actual number of dissenters is, compared to those in agree-
ment. In order to increase the disparity, you may want to privately poll people who have
been mostly silent, but who you suspect would agree with the majority. Don't say anything
that suggests the dissenters were deliberately trying to inflate the impression they were mak-
ing. Chances are they weren't, and even if they were, there would be no strategic advantage
to pointing it out. All you need do is show the actual numbers in a side-by-side comparison,
and people will realize that their impression of the situation does not match reality.

This advice doesn't just apply to issues with clear for-and-against positions. It applies to any
discussion where a fuss is being made but it's not clear that most people consider the issue
under discussion to be a real problem. After a while, if you agree that the issue is not wor-
thy of action, and can see that it has failed to get much traction (even if it has generated a lot
of mails), you can just observe publicly that it's not getting traction. If the "Noisy Minority"
effect has been at work, your post will seem like a breath of fresh air. Most people's impres-
sion of the discussion up to that point will have been somewhat murky: "Huh, it sure feels
like there's some big deal here, because there sure are a lot of posts, but I can't see any clear
progress happening." By explaining how the form of the discussion made it appear more tur-

180

http://catb.org/~esr/jargon/html/H/holy-wars.html
http://catb.org/~esr/jargon/html/H/holy-wars.html
https://www.ietf.org/rfc/ien/ien137.txt
https://www.ietf.org/rfc/ien/ien137.txt

Communications

bulent than it really was, you retrospectively give it a new shape, through which people can
recast their understanding of what transpired.

Don't Bash Competing Open Source Products
Refrain from giving negative opinions about competing open source software. It's perfect-
ly okay to give negative facts — that is, easily confirmable assertions of the sort often seen
in honest comparison charts. But negative characterizations of a less rigorous nature are best
avoided, for two reasons. First, they are liable to start flame wars that detract from produc-
tive discussion. Second, and more importantly, some of the developers in your project may
turn out to work on the competing project as well, or developers from the other project may
be considering contributing in yours.

This kind of crossover is more likely than it at first might seem. The projects are already in
the same domain (that's why they're in competition), and developers with expertise in a do-
main tend to make contributions wherever their expertise is applicable. Even when there is
no direct developer overlap, it is likely that developers on your project are at least acquainted
with developers on related projects. Their ability to maintain constructive personal ties could
be hampered by overly negative marketing messages.

Bashing competing closed-source products seems to be somewhat widely accepted in the
open source world. Personally, I deplore this tendency (though again, there's nothing wrong
with straightforward factual comparisons), not merely because it's rude, but also because it's
dangerous for a project to start believing its own hype and thereby ignore the ways in which
the proprietary competition may be technically superior.

In general, watch out for the effect that your project's marketing statements can have on your
own development community. People may be so excited at being backed by marketing dol-
lars that they lose objectivity about their software's true strengths and weaknesses. It is nor-
mal, and even expected, for a company's developers to exhibit a certain detachment toward
marketing statements, even in public forums. Clearly, they should not come out and contra-
dict the marketing message directly (unless it's actually wrong, though one hopes that sort
of thing would have been caught earlier). But they may poke fun at it from time to time, as a
way of bringing the rest of the development community back down to earth.

See also the related advice in the section called “Don't Bash Competing Vendors' Ef-
forts” [146].

Difficult People
Difficult people are no easier to deal with in electronic forums than they are in person. By
"difficult" I don't mean "rude". Rude people are annoying, but they're not necessarily diffi-

181

Communications

cult. This book has already discussed how to handle them: comment on the rudeness the first
time, and from then on, either ignore them or treat them the same as anyone else. If they con-
tinue being rude, they will usually make themselves so unpopular as to have no influence on
others in the project, so they are a self-containing problem.4

The really difficult cases are people who are not overtly rude, but who manipulate or abuse
the project's processes in a way that ends up costing other people time and energy yet do not
bring any benefit to the project.5

Often, such people look for wedgepoints in the project's procedures, to give themselves more
influence than they might otherwise have. This is much more insidious than mere rudeness,
because neither the behavior nor the damage it causes is apparent to casual observers. A clas-
sic example is the filibuster, in which someone (always sounding as reasonable as possible,
of course) keeps claiming that the matter under discussion is not ready for resolution,6 and
offers more and more possible solutions, or new viewpoints on old solutions, when what is
really going on is that he senses that a consensus or a ballot is about to form and he doesn't
like where it's headed. Another example is when there's a debate that won't converge on con-
sensus, but the group tries to at least clarify the points of disagreement and produce a sum-
mary for everyone to refer to from then on. The obstructionist, who knows the summary may
lead to a result he doesn't like, will often try to delay even the summary by relentlessly com-
plicating the question of what should be in it, either by objecting to reasonable suggestions or
by introducing unexpected new items.

Handling Difficult People
To counteract such behavior, it helps to understand the mentality of those who engage in it.
People generally do not do it consciously. No one wakes up in the morning and says to him-
self: "Today I'm going to cynically manipulate procedural forms in order to be an irritating
obstructionist."

Instead, such behavior is often prompted by a kind of insecurity, a feeling (not necessari-
ly based in reality) of being shut out of group interactions and decisions. The person feels

4 the section called “Codes of Conduct” [40] discusses how to handle people whose problematic behavior goes beyond
mere rudeness.
5For an extended discussion of one particular subspecies of difficult person, see Amy Hoy's hilariously on-target https://
slash7.com/2006/12/22/vampires/. Quoting Hoy: "It's so regular you could set your watch by it. The decay of a commu-
nity is just as predictable as the decay of certain stable nuclear isotopes. As soon as an open source project, language, or
what-have-you achieves a certain notoriety — its half-life, if you will — they swarm in, seemingly draining the very life
out of the community itself. They are the Help Vampires. And I'm here to stop them..."
6I recently learned the delightful and very useful term sealioning, which refers to a particular type of filibuster: repeated
insistence that more evidence is needed, or asking endless questions with the alleged purpose of clarifying but with the
actual purpose of delaying. See https://en.wikipedia.org/wiki/Sealioning. Persons engaging in sealioning may not even
be consciously aware that their behavior is not actually good-faith participation in debate.

182

https://slash7.com/2006/12/22/vampires/
https://slash7.com/2006/12/22/vampires/
https://en.wikipedia.org/wiki/Sealioning

Communications

he is not being taken seriously, or, in the more severe cases, that there is almost a conspir-
acy against him — that the other project members have decided to form an exclusive club,
of which he is not a member. This then justifies, in his mind, interpreting rules with maxi-
mum literalness and engaging in a formal manipulation of the project's procedures, in order
to make everyone else take him seriously. In extreme cases, the person can even believe that
he is fighting a lonely battle to save the project from itself.

It is the nature of such an attack from within that not everyone will notice it at the same time,
and some people may not see it at all unless presented with very strong evidence. This means
that neutralizing it can be quite a bit of work. It's not enough to persuade yourself that it's
happening; you have to marshal enough evidence to persuade others too, and then you have
to distribute that evidence in a thoughtful way.

Given that it's so much work to fight, it's often better just to tolerate it for a while. Think of
it like a parasitic but mild disease: if it's not too debilitating, the project can afford to remain
infected, and medicine might have harmful side effects.

However, when it gets too damaging to tolerate, then it's time for action. Start gathering
notes on the patterns you see. Make sure to include references to public archives — this is
one of the reasons projects keep records, so you should use them. Once you've got a good
case built, start having private conversations with other project participants. Don't tell them
what you've observed; instead, first ask them what they've observed. This may be your last
chance to get unfiltered feedback about how others see the troublemaker's behavior; once
you start openly talking about it, opinion will become polarized and no one will be able to re-
member what they formerly thought about the matter.

If private discussions indicate that at least some others see the problem too, then it's time to
do something. That's when you have to get really cautious, because it's very easy for this sort
of person to make it appear as though you're picking on them unfairly. Whatever you do,
never accuse them of maliciously abusing the project's procedures, of behaving in a paranoid
manner, or, in general, of any of the other things that you suspect are probably true. Your
strategy should be to look both more reasonable and more concerned with the overall welfare
of the project than they are, with the goal of either reforming the person's behavior or getting
them to go away permanently. Depending on the other developers and your relationship with
them, it may be advantageous to gather allies privately first. Or it may not; that might just
create ill will behind the scenes, if people think you're engaging in an improper whispering
campaign.

Remember that although the other person may be the one behaving destructively, you will be
the one who appears destructive if you make a public charge that you can't back up. Be sure
to have plenty of examples to demonstrate what you're saying, and say it as gently as possi-
ble while still being direct. You may not persuade the person in question, but that's okay as
long as you persuade everyone else.

183

Communications

Case study
I remember only a few situations, in almost 30 years of working in free software, where
things got so bad that we actually had to ask someone to stop posting altogether. In the ex-
ample I'll use here, the person was not rude, and sincerely wanted only to be helpful. He just
didn't know when to post and when not to post. Our forums were open to the public, and he
was posting so often, and asking questions on so many different topics, that it was getting
to be a noise problem for the community. We'd already tried asking him nicely to do a little
more research for answers before posting, but that had no effect.

The strategy that finally worked is a perfect example of how to build a strong case on neu-
tral, quantitative data. One of the developers, Brian Fitzpatrick, did some digging in the
archives, and then sent the following message privately to a few other developers. The of-
fender (the third name on the list below, shown here as "J. Random") had very little history
with the project, and had contributed no code or documentation. Yet he was the third most
active poster on the mailing lists:

From: "Brian W. Fitzpatrick" <fitz@collab.net>
To: [... recipient list omitted for anonymity ...]
Subject: The Subversion Energy Sink
Date: Wed, 12 Nov 2003 23:37:47 -0600

In the last 25 days, the top 6 posters to the svn
[dev|users] list have been:

 294 Karl Fogel
 236 "C. Michael Pilato"
 220 "J. Random"
 176 Branko Cibej
 130 Philip Martin
 126 Ben Collins-Sussman

I would say that five of these people are contributing to
Subversion hitting 1.0 in the near future.

I would also say that one of these people is consistently
drawing time and energy from the other 5, not to mention the
list as a whole, thus (albeit unintentionally) slowing the
development of Subversion. I did not do a threaded
analysis, but vgrepping my Subversion mail spool tells me
that every mail from this person is responded to at least

184

Communications

once by at least 2 of the other 5 people on the above list.

I think some sort of radical intervention is necessary here,
even if we do scare the aforementioned person away.
Niceties and kindness have already proven to have no effect.

dev@subversion is a mailing list to facilitate development
of a version control system, not a group therapy session.

-Fitz, attempting to wade through three days of svn mail
 that he let pile up

Though it might not seem so at first, J. Random's behavior was a classic case of abusing
project procedures. He wasn't doing something obvious like trying to filibuster a vote, but he
was taking advantage of the mailing list's policy of relying on self-moderation by its mem-
bers. We left it to each individual's judgement when to post and on what topics. Thus, we had
no procedural recourse for dealing with someone who either did not have, or would not exer-
cise, such judgement. There was no rule one could point to and say the person was violating
it, yet everyone except him knew that his frequent posting was getting to be a serious prob-
lem.

Fitz's strategy was, in retrospect, masterful. He gathered damning quantitative evidence, but
then distributed it discreetly, sending it first to a few people whose support would be key in
any drastic action. They agreed that some sort of action was necessary, and in the end we
called J. Random on the phone, described the problem to him directly, and asked him to sim-
ply stop posting. He never really did understand the reasons why; if he had been capable of
understanding, he probably would have exercised appropriate judgement in the first place.
But he agreed to stop posting, and the mailing lists became useable again. Part of the reason
this strategy worked was, perhaps, the implicit threat that we could start restricting his posts
via the forum's moderation features. But the reason we were able to have that option in re-
serve was that Fitz had gathered the necessary support from key people first.

Handling Growth
The price of success is heavy in the open source world. As your software gets more popu-
lar, the number of people who show up looking for information increases dramatically, while
the number of people able to provide information increases much more slowly. Furthermore,
even if the ratio were evenly balanced, there is still a fundamental scalability problem with
the way most open source projects handle communications. Consider mailing lists, for exam-
ple. Most projects have a mailing list for general user questions — sometimes the list's name
is "users", "discuss", "help", or something else. Whatever its name, the purpose of the list is

185

Communications

always the same: to provide a place where people can get their questions answered, while
others watch and (presumably) absorb knowledge from observing these exchanges.

These mailing lists work very well up to a few thousand users and/or a couple of hundred
posts a day. But somewhere after that, the system starts to break down, because every sub-
scriber sees every post; if the number of posts to the list begins to exceed what any individ-
ual reader can process in a day, the list becomes a burden to its members. Imagine, for in-
stance, if Microsoft had such a mailing list for Windows. Windows has hundreds of millions
of users; if even one-tenth of one percent of them had questions in a given twenty-four hour
period, then this hypothetical list would get hundreds of thousands of posts per day! Such a
list could never exist, of course, because no one would stay subscribed to it. This problem is
not limited to mailing lists; the same logic applies to chat rooms, other discussion forums,
indeed to any system in which a group hears questions from individuals. The implications
are ominous: the usual open source model of massively parallelized support simply does not
scale to the levels needed for world domination.7

There is no explosion when forums reach the breaking point. There is just a quiet negative
feedback effect: people unsubscribe from the lists, or leave the chat room, or at any rate stop
bothering to ask questions, because they can see they won't be heard in all the noise. As more
and more people make this highly rational choice, the forum's activity will seem to stay at a
manageable level. But it appears manageable precisely because the rational (or at least, ex-
perienced) people have started going elsewhere for information — while the inexperienced
people stay behind and continue posting. In other words, one side effect of continuing to use
unscalable communications models as a project grows is that the average quality of commu-
nications tends to go down. As the benefit/cost ratio of using high-population forums goes
down, naturally those with the experience to do so start to look elsewhere for answers first.

Adjusting communications mechanisms to cope with project growth therefore involves two
related strategies:

1. Recognizing when particular parts of a forum are not suffering unbounded growth, even if
the forum as a whole is, and separating those parts off into new, more specialized forums
(i.e., don't let the good be dragged down by the bad).

2. Making sure there are many automated sources of information available, and that they are
kept organized, up-to-date, and easy to find.

Strategy (1) is usually not too hard. Most projects start out with one main forum: a general
discussion mailing list, on which feature ideas, design questions, and coding problems can
all be hashed out. Everyone involved with the project is in that forum. After a while, it usual-

7An interesting experiment would be a probablistic mailing list, that sends each new thread-originating post to a random
subset of subscribers, based on the approximate traffic level they signed up for, and keeps just that subset subscribed to
the rest of the thread; such a forum could in theory scale without limit. If you try it, let me know how it works out.

186

Communications

ly becomes clear that the list has evolved into several distinct topic-based sublists. For exam-
ple, some threads are clearly about development and design; others are user questions of the
"How do I do X?" variety; maybe there's a third topic family centered around processing bug
reports and enhancement requests; and so on. A given individual, of course, might partici-
pate in many different thread types, but the important thing is that there is not a lot of overlap
between the types themselves. They could be divided into separate forums without causing
harmful balkanization, because the threads rarely cross topic boundaries.

Actually doing this division is a two-step process. You create the new list (or chat room, or
whatever it is to be), and then you spend whatever time is necessary gently nagging and re-
minding people to use the new forums appropriately. That latter step can last for weeks, but
eventually people will get the idea. You simply have to make a point of always telling the
sender when a post is sent to the wrong destination, and doing so visibly, so that other peo-
ple are encouraged to help out with routing. It's also useful to have a web page providing a
guide to all the forums available; your responses can simply reference that web page and, as
a bonus, the recipient may learn something about looking for guidelines before posting.

Strategy (2) is an ongoing process, lasting the lifetime of the project and involving many
participants. Of course it is partly a matter of having up-to-date documentation (see the sec-
tion called “Documentation” [27]) and making sure to point people there. But it is also much
more than that; the sections that follow discuss this strategy in detail.

Conspicuous Use of Archives
Typically, all communications in an open source project, except private chat conversations,
are archived. The archives are public and searchable, and have referential stability: that is,
once a given piece of information is recorded at a particular address (URL), it stays at that
address forever.

Use those archives as much as possible, and as conspicuously as possible. Even when you
know the answer to some question off the top of your head, if you think there's a reference in
the archives that contains the answer, spend the time to dig it up and present it. Every time
you do that in a publicly visible way, some people learn for the first time that the archives
are there, and that searching in them can produce answers. Also, by referring to the archives
instead of rewriting the advice, you reinforce the social norm against duplicating informa-
tion. Why have the same answer in two different places? When the number of places it can
be found is kept to a minimum, people who have found it before are more likely to remem-
ber what to search for to find it again. Well-placed references also contribute to improving
search results, because they strengthen the targeted resource's ranking in Internet search en-
gines.

There are times when duplicating information makes sense, however. For example, suppose
there's a response already in the archives, not from you, saying:

187

Communications

It appears that your Scanley indexes have become frobnicated.
To unfrobnicate them, run these steps:

1. Shut down the Scanley server.
2. Run the 'defrobnicate' program that ships with Scanley.
3. Start up the server.

Then, months later, you see another post indicating that someone's indexes have become
frobnicated. You search the archives and come up with the old response above, but you real-
ize it's missing some steps (perhaps by mistake, or perhaps because the software has changed
since that post was written). The classiest way to handle this is to post a new, more complete
set of instructions, and explicitly obsolete the old post by mentioning it:

It appears that your Scanley indexes have become frobnicated.
We saw this problem back in July, and J. Random posted a
solution at http://blahblahblah/blah. Below is a more
complete description of how to unfrobnicate your indexes,
based on J. Random's instructions but extending them a bit:

1. Shut down the Scanley server.
2. Become the user the Scanley server normally runs as.
3. Run the 'defrobnicate' program on the indexes.
4. Run Scanley by hand to see if the indexes work now.
5. Restart the server.

(In an ideal world, it would be possible to attach a note to the old post, saying that there is
newer information available and pointing to the new post. However, I don't know of any
archiving software that offers an "obsoleted by" tag. This is another reason why creating ded-
icated web pages with answers to common questions is a good idea.8)

Archives are probably most often searched for answers to technical questions, but their im-
portance to the project goes well beyond that. If a project's formal guidelines are its statuto-
ry law, the archives are its common law: a record of all decisions made and how they were
arrived at. In any recurring discussion, it's pretty much obligatory nowadays to start with an
archive search. This allows you to begin the discussion with a summary of the current state
of things, anticipate objections, prepare rebuttals, and possibly discover angles you hadn't

8Many technical questions about open source software also have answers posted on Stack Overflow (https://stackover-
flow.com/), a collaborative knowledge-sharing site. If you happen to know about an item on Stack Overflow that needs
to be updated due to changes in the software, then posting the new answer in that item may be worthwhile. Stack Over-
flow is often the first place people go to find answers, and its answers tend to rank very highly in search engines, at least
as of this writing in early 2022 and for some years preceding.

188

https://stackoverflow.com/
https://stackoverflow.com/

Communications

thought of. Also, the other participants will expect you to have done an archive search. Even
if the previous discussions went nowhere, you should include pointers to them when you re-
raise the topic, so people can see for themselves a) that they went nowhere, and b) that you
did your homework, and therefore are probably saying something now that has not been said
before.

Treat All Resources Like Archives

All of the preceding advice applies to more than just mailing list archives. Having each par-
ticular piece of information be located at a stable, conveniently findable address (or perma-
link) should be an organizing principle for all of the project's information. Let's take the
project FAQ as a case study.

How do people use a FAQ?

1. They want to search in it for specific words and phrases.

Therefore: the FAQ should be available in some sort of textual format.

2. They expect search engines such as Google to know about the FAQ's content, so that
searches can result in FAQ entries.

Therefore: the FAQ should be available as a web page.

3. They want to browse it, soaking up information without necessarily looking for answers
to specific questions.

Therefore: the FAQ should not only be available as a web page, it should be designed for
easy browsability and have a table of contents.

4. They want to be able to refer other people directly to specific items in the FAQ.

Therefore: each individual entry in the FAQ should be reachable via a unique URL (e.g.,
using HTML IDs and named anchors, which are tags that allow people to reach a partic-
ular location on the page).

5. They want to be able to add new material to the FAQ, though note that this happens much
less often than answers are looked up — FAQs are far more often read from than written
to.

Therefore: the source files for the FAQ should be conveniently available (see the section
called “Version Everything” [79]), in a format that's easy to edit.

Formatting the FAQ like this is just one example of how to make a resource presentable. The
same properties — direct searchability, availability to major Internet search engines, brows-

189

Communications

ability, referential stability, and (where applicable) editability — apply to other web pages, to
the source code tree, to the bug tracker, to Q&A forums, etc. It just happens that most mail-
ing list archiving software long ago recognized the importance of these properties, which is
why mailing lists tend to have this functionality natively, while other formats may require
a little extra effort on the maintainer's part. Chapter 8, Managing Participants [234] dis-
cusses how to spread that maintenance burden across many participants.

Codifying Tradition

As a project acquires history and complexity, the amount of data each new incoming partic-
ipant must absorb increases. Those who have been with the project a long time were able to
learn, and invent, the project's conventions as they went along. They will often not be con-
sciously aware of what a huge body of tradition has accumulated, and may be surprised at
how many missteps recent newcomers seem to make. Of course, the issue is not that the
newcomers are of any lower quality than before; it's that they face a bigger acculturation bur-
den than newcomers did in the past.

The traditions a project accumulates are as much about how to communicate and organize
information as they are about coding standards and other technical minutiae. We've already
looked at both sorts of standards, in the section called “Developer Documentation” [30] and
the section called “Writing It All Down” [112] respectively, and examples are given there.
What this section is about is how to keep such guidelines up-to-date as the project evolves,
especially guidelines about how communications are managed, because those are the ones
that change the most as the project grows in size and complexity.

First, watch for patterns in how people get confused. If you see the same situations coming
up over and over, especially with new participants, chances are there is a guideline that needs
to be documented but isn't. Second, don't get tired of saying the same things over and over
again, and don't sound like you're tired of saying them. You and other project veterans will
have to repeat yourselves often; this is an inevitable side effect of the arrival of newcomers.

Every web page, every mailing list message, and every chat room should be considered ad-
vertising space — not for commercial advertisements, but for ads about your project's own
resources. What you put in that space depends on the demographics of those likely to read it.
An chat room for user questions, for example, is likely to get people who have never inter-
acted with the project before — often someone who has just installed the software, and has
a question she'd like answered immediately (after all, if it could wait, she'd have sent it to a
mailing list instead, which would probably use less of her total time, although it would take
longer for an answer to come back). Most people don't make a permanent investment in a
support chat; they show up, ask their question, and leave.

190

Communications

Therefore, the room's topic banner9 should be aimed at people looking for technical answers
about the software right now, rather than at, say, people who might get involved with the
project in a long term way and for whom community interaction guidelines might be more
appropriate.

With mailing lists, the "ad space" is a tiny footer appended to every message. Most projects
put subscription/unsubscription instructions there, and perhaps a pointer to the project's
home page or FAQ page as well. You might think that anyone subscribed to the list would
know where to find those things, and they probably do — but many more people than just
subscribers see those mailing list messages. An archived post may be linked to from many
places; indeed, some posts become so widely known that they eventually have more readers
off the list than on it.

Formatting can make a big difference. For example, in the Subversion project, we were hav-
ing limited success using the bug-filtering technique described in the section called “Pre-
Filtering the Bug Tracker” [91]. Many bogus bug reports were still being filed by inexperi-
enced people, because Subversion was experiencing dramatic user growth, and each time it
happened, the filer had to be educated in exactly the same way as the 500 people before him.
One day, after one of our developers had finally gotten to the end of his rope and flamed
some poor user who didn't read the ticket tracker guidelines carefully enough, another devel-
oper decided this pattern had gone on long enough. He suggested that we reformat the tick-
et tracker front page so that the most important part, the injunction to discuss the bug on the
mailing lists or chat rooms before filing, would stand out in huge, bold red letters, on a bright
yellow background, centered prominently above everything else on the page. We did so (it's
been reformatted a bit since then, but it's still very prominent — you can see the results at
https://subversion.apache.org/reporting-issues.html), and the result was a noticeable drop
in the rate of bogus ticket filings. The project still got them, of course, but the rate slowed
considerably, even as the number of users increased. The outcome was not only that the bug
database contained less junk, but that those who responded to ticket filings stayed in a better
mood, and were more likely to remain friendly when responding to one of the now-rare bo-
gus filings. This improved both the project's image and the mental health of its participants.

The lesson for us was that merely writing up the guidelines was not enough. We also had to
put them where they'd be seen by those who need them most, and format them in such a way
that their status as introductory material would be immediately clear to people unfamiliar
with the project.

Static web pages are not the only venue for advertising the project's customs. A certain
amount of interactive monitoring (in the friendly-reminder sense, not the prison-panopticon
sense) is also required. All peer review, even the commit reviews described in the section

9Not all chat platforms support per-room topic banners. The advice given here applies only to those that do.

191

https://subversion.apache.org/reporting-issues.html

Communications

called “Practice Conspicuous Code Review” [41], should include review of people's adher-
ence to project norms, especially with regard to communications conventions.

Another example from the Subversion project: we settled on a convention of "r12908" to
mean "revision 12908 in the version control repository." The lower-case "r" prefix is easy
to type, and because it's half the height of the digits it makes an easily-recognizable block of
text when combined with the digits. Of course, settling on the convention doesn't mean that
everyone will begin using it consistently right away. Thus, when a change comes in with a
commit message like this:

Typo fixes from J. Random Contributor

* trunk/contrib/client-side/psvn/psvn.el:
 Fixed some typos from revision 12828.

...part of reviewing that commit is to say "By the way, please use 'r12828', not 'revision
12828' when referring to past changes." This isn't just pedantry; it's important as much for
automatic parsability as for human readership.10

By following the general principle that there should be canonical referral methods for com-
mon entities, and that these referral methods should be used consistently everywhere, the
project in effect exports certain standards. Those standards enable people to write tools that
present the project's communications in more useable ways — for example, a revision for-
matted as "r12828" could be transformed into a live link into the repository browsing sys-
tem. This would be harder to do if the revision were written as "revision 12828", both be-
cause that form could be divided across a line break, and because it's less distinct (the word
"revision" will often appear alone, and groups of numbers will often appear alone, whereas
the combination "r12828" can only mean a revision number). Similar concerns apply to tick-
et numbers, FAQ items, etc.11

(Note that for Git commit IDs, the widely-accepted standard syntax is "commit c03d-
d89305, that is, the word "commit", followed by a space, followed by the first 8-10 char-
acters of the commit hash. Some very busy projects have standardized on 12 characters, to
avoid collisions; the only time all 40 characters of the hash are used is in non-human-read-
able contexts, like saving a commit ID in an automated release-tracking system or some-
thing.)

10 For more about how to write good commit messages, see Chris Beams' excellent post "How to Write a Git Commit
Message" at https://chris.beams.io/posts/git-commit/. Many projects refer to that post as their baseline standard for com-
mit messages.
11A more extended example of the kinds of benefits such standards make possible is the Contribulyzer example men-
tioned in the section called “The Automation Ratio” [242].

192

https://chris.beams.io/posts/git-commit/

Communications

Even for entities where there is not an obvious short, canonical form, people should still be
encouraged to provide key pieces of information consistently. For example, when referring
to a mailing list message, don't just give the sender and subject; also give the archive URL
and the Message-ID header. The last allows people who have their own copy of the mailing
list (people sometimes keep offline copies, for example to use on a laptop while traveling)
to unambiguously identify the right message in a search even if they don't have access to the
online archives. The sender and subject wouldn't be enough, because the same person might
make several posts in the same thread, even on the same day.

The more a project grows, the more important this sort of consistency becomes. Consisten-
cy means that everywhere people look, they see the same patterns being followed, and start
to follow those patterns themselves. This, in turn, reduces the number of questions they need
to ask. The burden of having a million readers is no greater than that of having one; scalabil-
ity problems start to arise only when a certain percentage of those readers ask questions. As
a project grows, therefore, it must reduce that percentage by increasing the density and find-
ability of information, so that any given person is more likely to find what she needs without
having to ask.

Choose the Right Forum
One of the trickiest things about managing an open source project is getting people to be
thoughtful about which forum they choose for different kinds of communications. It's tricky
partly because it's not immediately obvious that it matters. During any given conversation,
the participants are mostly concerned with what the people involved are saying, and won't
usually stop to think about whether or not the forum itself gives others who might want to
take part the opportunity to do so.

For example, a real-time forum like chat is terrific for quick questions, for opportunistic syn-
chronization of work, for reminding someone of something they promised to do, etc. But it's
not a good forum for making decisions that affect the whole project, because the people who
take part in a conversation in chat are just whoever happened to be in the room at that mo-
ment — which is very dependent on work schedules, time zones, etc. On the other hand, the
development mailing list is a great place for making formal project-wide decisions, since it's
archived and every interested party will have an opportunity to see and respond to the rele-
vant posts, even though email is not as well-suited to quick, real-time interactions as chat is.

Another example comes up frequently in bug tracker usage, especially in the last decade or
so as bug trackers have become well-integrated with email. Sometimes people will be drawn
into a discussion in a bug ticket12 and because they simply see project-related emails coming

12For example, on GitHub, simply mentioning someone's GitHub account name with an @-sign (e.g., @kfogel) in a
comment on a ticket will cause that person to be added to the email thread associated with that ticket.

193

Communications

in to their email client, they treat the discussion as though it's happening on the real develop-
ment list. But it's not: anyone who wasn't watching that bug and who wasn't explicitly invit-
ed into the conversation usually won't even be aware it's happening. If things are discussed
in that bug ticket that go beyond the scope of just that one bug, those things will be discussed
without input from people who should have had at least the chance to participate.

The solution to this is to encourage conscious, intentional forum changes. If a discussion
starts to get into questions beyond the scope of its original forum, then at some point some-
one involved should ask that the conversation move over to the main development list or
some other more appropriate forum.

It's not enough for you to do this on your own. You have to create a culture where it's nor-
mal for everyone to do it, so everyone thinks about forum appropriateness as a matter of
course, and feels comfortable raising questions of forum whenever necessary in any discus-
sion. Obviously, documenting the practice will help (see the section called “Writing It All
Down” [112]), but you'll probably also need to remind people of it often, especially when
your project is starting out. A good rule of thumb is: if the conversation looks convergent,
then it's okay to keep it in the bug ticket or other original forum. But if it looks likely to di-
verge (e.g., widening into philosophical issues about how the software should behave, or
raising design issues that go beyond just the one bug) for a while before it converges, then
ask that the discussion be moved to a better forum, usually the development mailing list.

Cross-Link Between Forums
When a discussion moves from one place to another, cross-link between the old and new
place. For example, if discussion moves from the ticket tracker to the mailing list, link to the
mailing list thread from the ticket, and mention the original ticket at the start of the new list
thread. It's important for someone following the ticket to be able to reach the later discussion;
it's also important for someone who encounters the ticket a year later to be able to follow to
where the conversation went to in the mailing list archives. The person who does the move
may find this cross-linking slightly laborious, but open source is fundamentally a writer-re-
sponsible culture. It's more important to make things easy for the tens or hundreds of people
who may read the bug than for the three or five people writing about it.

It's also fine to take important conclusions or summaries from the list discussion and paste
them into the ticket at the end, if that will make things convenient for readers. A common id-
iom is to move discussion to the mailing list, put a link to that thread in the ticket, and then
when the discussion finishes, paste the final summary into the ticket (along with a link to the
message containing that summary), so someone browsing the ticket later can easily see what
conclusion was reached without having to click to somewhere else or do detective work.
Note that the usual "two masters" data duplication problem does not exist here, because both
archives and ticket comments are usually treated as static and unchangeable anyway.

194

Communications

Publicity
In free software, there is a fairly smooth continuum between purely internal discussions and
public relations statements. This is partly because the target audience is not strictly bounded:
because posts are publicly accessible, the project doesn't have full control over the impres-
sion the world gets. Someone — say, a https://news.ycombinator.com/ poster or https://slash-
dot.org/ editor — may draw millions of readers' attention to a post that no one ever expect-
ed to be seen outside the project. This is a fact of life that all open source projects live with,
but in practice, the risk is usually small. In general, the announcements that the project wants
most publicized most are the ones that will be most publicized, assuming you use the right
mechanisms to indicate relative newsworthiness to the outside world.

Announcing Releases and Other Major Events
For major announcements, there tend to be a few main channels of distribution, in which an-
nouncements should be made as nearly simultaneously as possible:

1. Your project's front page is probably seen by more people than any other part of the
project. If you have a really major announcement, put a blurb there. The blurb should be a
very brief synopsis that links to the press release (see below) for more information.

2. At the same time, you should also have a "News" or "Press Releases" area of the web
site, where the announcement can be written up in detail. Part of the purpose of a press re-
lease is to provide a single, canonical "announcement object" that other sites can link to,
so make sure it is structured accordingly: either as one web page per release, as a discrete
blog entry, or as some other kind of entity that can be linked to while still being kept dis-
tinct from other press releases in the same area.

3. Make sure the announcement gets broadcast by any relevant Twitter or other microblog
handles, and goes out on any news channels and RSS feeds. (The latter should happen au-
tomatically when you publish the announcement, if things are set up properly.)

4. Post to forums as appropriate, in the manner described in the section called “Announc-
ing” [48]).

5. Send a mail to your project's announcement mailing list. This list's name should actually
be "announce", that is, announce@yourprojectdomain.org, because that's a fair-
ly standard convention now, and the list's charter should make it clear that it is very low-
traffic, reserved for major project announcements. Most of those announcements will be
about new releases of the software, but occasionally other events, such as a fundraising
drive, the discovery of a security vulnerability (see the section called “Announcing Secu-

195

https://news.ycombinator.com/
https://slashdot.org/
https://slashdot.org/

Communications

rity Vulnerabilities” [197]), or a major shift in project direction may be posted there
as well. Because it is low traffic and used only for important things, the announce list
typically has the highest subscribership of any mailing list in the project (of course, this
means you shouldn't abuse it — consider carefully before posting). To avoid random peo-
ple making announcements, or worse, spam getting through, the announce list must al-
ways be moderated.

Try to make the announcements in all these places at the same time, as nearly as possible.
People might get confused if they see an announcement on the mailing list but then don't
see it reflected on the project's home page or in its press releases area. If you get the various
changes (emails, web page edits, etc) queued up and then send them all in a row, you can
keep the window of inconsistency very small.

For a less important event, you can eliminate some or all of the above outlets. The event
will still be noticed by the outside world in direct proportion to its importance. For example,
while a new release of the software is a major event, merely setting the date of the next re-
lease, while still somewhat newsworthy, is not nearly as important as the release itself. Set-
ting a date is worth an email to the daily mailing lists (not the announce list), and an update
of the project's timeline or status web page, but no more.

However, you might still see that date appearing in discussions elsewhere on the Internet,
wherever there are people interested in the project. People who are lurkers on your mailing
lists, just listening and never saying anything, are not necessarily silent elsewhere. Word of
mouth gives very broad distribution; you should count on it, and construct even minor an-
nouncements in such a way as to encourage accurate informal transmission. Specifically,
posts that you expect to be quoted should have a clearly meant-to-be-quoted portion, just as
though you were writing a formal press release. For example:

Just a progress update: we're planning to release version 2.0 of Scanley
in mid-August 2022. You can always check http://www.scanley.org/sta-
tus.html for updates. The major new feature will be regular-expression
searches.

Other new features include: ... There will also be various bugfixes, includ-
ing: ...

The first paragraph is short, gives the two most important pieces of information (the release
date and the major new feature), and a URL to visit for further news. If that paragraph is the
only thing that crosses someone's screen, you're still doing pretty well. The rest of the mail
could be lost without affecting the gist of the content. Of course, sometimes people will link
to the entire mail anyway, but just as often, they'll quote only a small part. Given that the lat-
ter is a possibility, you might as well make it easy for them, and in the bargain get some in-
fluence over what gets quoted.

196

Communications

Announcing Security Vulnerabilities

Handling a security vulnerability is different from handling any other kind of bug report. In
free software, doing things openly and transparently is normally almost a religious credo.
Every step of the standard bug-handling process is visible to all who care to watch: the ar-
rival of the initial report, the ensuing discussion, and the eventual fix.

Security bugs are different. They can compromise users' data, and possibly users' entire com-
puters. To discuss such a problem openly would be to advertise its existence to the entire
world — including to all the parties who might make malicious use of the bug. Even mere-
ly committing a fix effectively announces the bug's existence (there are organizations who
watch the commit logs of public projects, systematically looking for changes that indicate se-
curity problems in the pre-change code; these organizations do not have your users' interests
in mind).

Most open source projects have settled on approximately the same set of steps to handle this
conflict between openness and secrecy, based on these basic guidelines:

1. Don't talk about the bug publicly until a fix is available, and then supply the fix publicly
at the same instant you announce the bug.

It may make sense to supply the fix by packaging it as a release, or it may be enough to
just commit it to the project's public repository. Whichever of those you you do, doing it
effectively announces the vulnerability, so your formal announcement should go out in
tandem with that fix.

2. Come up with that fix as fast as you can — especially if someone outside the project re-
ported the bug, because then you know there's at least one person outside the project who
is able to exploit the vulnerability.

In practice, those principles lead to a fairly standardized series of steps, which are described
in the sections below.

Receive the Report

Obviously, a project needs the ability to receive security bug reports from anyone. But the
regular bug reporting channels won't do, because they can be watched by anyone too. There-
fore, have a separate mailing list or contact form for receiving security bug reports. That fo-
rum must not have publicly readable archives, and its subscribership must be strictly con-
trolled — only long-time, trusted developers can be on the list, and people whom such devel-

197

Communications

opers have consensus that they trust.13 (If you need a formal definition of "trusted develop-
er", you can use "anyone who has had commit access for two years or more" or something
like that, to avoid favoritism.) This is the group that will handle security bugs.

Ideally, that reporting gateway should not be spam-protected or moderated, since you don't
want an urgent report to get filtered out or delayed just because no moderators happened to
be online that weekend. If you do use automated spam-protection software, try to configure it
with high-tolerance settings; it's better to let a few spams through than to miss a vulnerability
report.

The submission mechanism should itself be secure. That is, if it is a contact form, it should
be on an https:// (TLS-protected) page, or if it is an email address, there should be a
well-advertised public key (digitally signed by as many of the core developers as possible) so
people can send encrypted mails to that address.14 A web form submission or an email sent
to your project may travel over many Internet hops on its way there; you have no reason to
trust whoever runs those intermediate servers, and there is a flourishing market for new secu-
rity vulnerabilities. Assume the worst and design accordingly.

Develop the Fix Quietly

So what does the security list do when it receives a report? The first task is to evaluate the
problem's severity and urgency:

1. How serious is the vulnerability? Does it allow a malicious attacker to take over the com-
puter of someone who uses your software? Or does it, say, merely leak information about
the sizes of some of their files?

2. How easy is it to exploit the vulnerability? Can an attack be scripted, or does it require
circumstantial knowledge, educated guessing, and luck?

3. Who reported the problem to you? The answer to this question doesn't change the na-
ture of the vulnerability, of course, but it does give you an idea of how many other peo-
ple might know about it. If the report comes from one of the project's own develop-

13E.g., a release manager who maybe isn't a core developer but who is already trusted to roll releases anyway. I've seen
cases where companies who had been long involved in a project had managers as members of the project's security
group, even though those managers had never committed a line of code, because by common consent the project's main-
tainers trusted them and felt it was to the project's benefit for them to see vulnerability reports as soon as possible. There
is no one rule that will be appropriate for all projects, but in general, the core maintainers should follow the principle that
anyone who receives security reports must be trustable both in terms of intention and in terms of their technical ability to
not accidentally leak information (e.g., someone whose email gets hacked regularly should probably not be on the secu-
rity list).
14If you don't know what all of these terms mean, find people you trust who do and get them to help your project. Han-
dling security vulnerablities competently requires a working knowledge of these concepts.

198

Communications

ers, you can breathe a little easier (but only a little), because you can trust them not to
have told anyone else about it. On the other hand, if it came in an email from anony-
mous14@globalhackerz.net, then you'd better act as fast as you can. The person
did you a favor by informing you of the problem at all, but you have no idea how many
other people she's told, or how long she'll wait before exploiting the vulnerability on live
installations.

Note that the difference we're talking about here is often just a narrow range between ur-
gent and extremely urgent. Even when the report comes from a known, friendly source, there
could be other people on the Net who discovered the bug long ago and just haven't reported
it. The only time things aren't urgent is when the bug inherently does not compromise securi-
ty very severely.

The "anonymous14@globalhackerz.net" example is not facetious, by the way
(though that particular email address is). You really may get bug reports from identi-
ty-cloaked people who, by their words and behavior, never quite clarify whether they're on
your side or not. It doesn't matter: if they've reported the security hole to you, they'll feel
they've done you a good turn, and you should respond in kind. Thank them for the report,
give them a date on or before which you plan to release a public fix, and keep them in the
loop. Sometimes they may give you a date — that is, an implicit threat to publicize the bug
on a certain date, whether you're ready or not. This may feel like a bullying power play, but
it's more likely a preëmptive action resulting from past disappointment with unresponsive
software producers who didn't take security reports seriously enough. Either way, you can't
afford to tick this person off. After all, if the bug is severe, she has knowledge that could
cause your users big problems. Treat such reporters well, and hope that they treat you well.

Another frequent reporter of security bugs is the security professional, someone who au-
dits code for a living and keeps up on the latest news of software vulnerabilities. These peo-
ple usually have experience on both sides of the fence — they've both received and sent re-
ports, probably more than most developers in your project have. They too will usually give a
deadline for fixing a vulnerability before going public. The deadline may be somewhat nego-
tiable, but that's up to the reporter; deadlines have become recognized among security profes-
sionals as pretty much the only reliable way to get organizations to address security problems
promptly. So don't treat the deadline as rude; it's a time-honored tradition, and there are good
reasons for it. Negotiate if you absolutely must, but remember that the reporter holds all the
cards.

Once you know the severity and urgency, you can start working on a fix. There is sometimes
a tradeoff between doing a fix elegantly and doing it speedily; this is why you must agree on
the urgency before you start. Keep discussion of the fix restricted to the security list mem-
bers, of course, plus the original reporter (if she wants to be involved) and any developers
who need to be brought in for technical reasons.

199

Communications

Do not commit the fix to any public repository before the go-public date. If you were to com-
mit it publicly, even with an innocent-looking log message, someone might notice and under-
stand the change. You never know who is watching your repository and why they might be
interested. Turning off commit emails wouldn't help; first of all, the gap in the commit mail
sequence would itself look suspicious, and anyway, the data would still be in the repository.
Just do all development in some private place known only to the people already aware of the
bug.

CVE Numbers

You may have seen a CVE number associated with a particular security problems — e.g., a
number like "CVE-2014-0160", where the first numeric part is the year, and the second is
an increasing sequence number (it may exceed four digits if more than 10,000 numbers are
handed out in a given year).

A CVE number is an entry in the "Common Vulnerabilities and Exposures" list maintained
at https://www.cve.org/.15 The purpose of the list is to a provide standardized name for every
known computer security problem, so that everyone has a unique, canonical name to use
when discussing it, and a central place to go to find out more information.16

A CVE entry does not itself contain a full description of the bug and how to protect against
it. Instead, it contains a brief summary, and a list of references to external resources (such as
a announcement post from the project in question) where people can go to get more detailed
information. The real purpose of https://www.cve.org/ is to provide a well-organized space in
which every vulnerability has a single name, and people have a clear route to get more data
about it. See https://www.cve.org/CVERecord?id=CVE-2014-0160 for an example of an en-
try.

If your vulnerability meets the criteria, you may wish to obtain a CVE number for it. You
can request one using the instructions at https://www.cve.org/ResourcesSupport/ReportRe-
quest, but if there is someone in your project who has already obtained CVE numbers, or
who knows someone who has, let them do it. The CVE Program gets a lot of submissions,
many of them spurious or poorly formed; by submitting through an experienced and trust-
ed source, you will save everyone time and possibly get your CVE number assigned more
quickly. The other advantage of doing it this way is that somewhere along the chain, some-
one may know enough to tell you that a) it wouldn't count as a vulnerability or exposure ac-

15Formerly at https://cve.mitre.org/, so if you're accustomed to the older URL, note that the site is transitioning to
www.cve.org. The transition started in late September 2021 and is planned to be completed within one year.
16In the past, a CVE number would start out as a CAN number ("CAN" for "candidate") until it was approved for inclu-
sion in the official list, at which point the "CAN" would be replaced with "CVE" while the number portion remained the
same. However, nowadays they are just assigned a "CVE-" prefix from the start, although that prefix does not guarantee
that the vulnerability will be included in the official list. (For example, it might be later discovered to be a duplicate of
an existing CVE, in which case the earlier one — the lower number — should be used.)

200

https://www.cve.org/
https://www.cve.org/
https://www.cve.org/CVERecord?id=CVE-2014-0160
https://www.cve.org/ResourcesSupport/ReportRequest
https://www.cve.org/ResourcesSupport/ReportRequest
https://cve.mitre.org/

Communications

cording to the official criteria, so there is no point submitting it, or b) the vulnerability al-
ready has a CVE number. The latter can happen if the bug has already been published on an-
other security advisory list (and if that happened without your project hearing about it, then
you should worry what else might be going on that you don't know about.)

If you get a CVE number at all, you usually want to get it in the early stages of your bug in-
vestigation, so that all further communications can refer to that number. The entry won't be-
come public right away — see https://www.cve.org/About/Process for how and when public
disclosure happens — but the number will be reserved, and that in itself makes coordination
and management of the vulnerability easier.

Common Vulnerability Scoring System (CVSS) Scores

Describing the severity of a vulnerability accurately is actually a difficult task. Does the vul-
nerability require physical access to the computer, or is network access enough? Does it
require an authenticated user or not? Is it technically difficult to exploit, or can any bored
teenager with some coding skills run it? Does it affect data integrity? Does it cause the soft-
ware to crash?

Therefore, don't try to improvise language for expressing severity. Instead, use the Common
Vulnerability Scoring System (CVSS) developed by the National Vulnerability Database at
the U.S. National Institute of Standards: https://nvd.nist.gov/vuln-metrics/cvss

NVD has thought very carefully about how to accurately and completely characterize severi-
ty for digital vulnerabilities, and their standardized expression format has become a standard
in computer security. You can see an example in the "Severity:" section of the sample pre-
notification email in the section called “Pre-Notification” [201] below.

Pre-Notification

Once your security response team (that is, those developers who are on the security mailing
list, or who have been brought in to deal with a particular report) has a fix ready, you need to
decide how to distribute it.

If you simply commit the fix to your repository, or otherwise announce it to the world, you
effectively force everyone using your software to upgrade immediately or risk being hacked.
It is sometimes appropriate, therefore, to do pre-notification for certain important users.

Pre-notification is somewhat controversial, because it privileges some users over others. I
personally think there are some circumstances where it is the right choice, particularly when
there are well-known online services that use the software and that are tempting targets for
attackers (perhaps because those services hold a lot of commercial or personal data about
users). Those service's administrators would appreciate having an extra day or two to do the

201

https://www.cve.org/About/Process
https://nvd.nist.gov/vuln-metrics/cvss

Communications

upgrade, so that they are already protected by the time the exploit becomes public knowl-
edge — and their users, if they knew about this at all, would appreciate it too.

Pre-notification simply means contacting those administrators privately before the go-public
date, telling them of the vulnerability and how to fix it. You should send pre-notification on-
ly to people you trust to be discreet with the information, and with whom you can communi-
cate securely. That is, the qualification for receiving pre-notification is threefold: the recip-
ient must run a large, important service where a compromise would be a serious matter; the
recipient must be known to be someone who won't blab about the security problem before
the go-public date; and you must have a way to communicate securely with the recipient, so
that any eavesdroppers between you and your recipient can't read the message.17

Pre-notification should be done via secure means. If email, then encrypt it, for the same rea-
sons explained in the section called “Receive the Report” [197], but if you have a phone
number or other out-of-band secure way to contact the administrator, use that. When send-
ing encrypted pre-notification emails, send them individually (one at a time) to each recipi-
ent. Do not send to the entire list of recipients at once, because then they would see each oth-
ers' names — meaning that you would essentially be alerting each recipient to the fact that
each other recipient may have a security hole in her service. Sending it to them all via blind
CC (BCC) isn't a good solution either, because some admins protect their inboxes with spam
filters that either block or reduce the priority of BCC'd mail, since so much spam is sent via
BCC.

Here's a sample pre-notification mail:

From: Your Name Here
To: admin@large-famous-server.com
Reply-to: Your Address Here (not the security list's address)
Subject: Confidential notification regarding a security vulnerability.

[[[BEGIN ENCRYPTED AND DIGITALLY-SIGNED MAIL]]]

This email is a confidential pre-notification of a security
alert in the Scanley server software.

Please *do not forward* any part of this mail to anyone.
The public announcement is not until May 19th, and we'd like
to keep the information embargoed until then.

17Remember that Subject lines in emails aren't encrypted, so don't put too much information about the vulnerability in a
Subject line.

202

Communications

You are receiving this mail because (we think) you run a
Scanley server, and would want to have it patched before
this security hole is made public on May 19th.

References:
===========

 CVE-2022-892346: Scanley stack overflow in queries

Vulnerability:
==============

 The server can be made to run arbitrary commands if the
 server's locale is misconfigured and the client sends a
 malformed query.

Severity:
=========

 CVSSv2 Base Score: 9.0
 CVSSv2 Base Vector: AV:N/AC:L/Au:N/C:C/I:C/A:C

 (See https://nvd.nist.gov/CVSS/Vector-v2.aspx for how to
 interpret these expressions.)

Workarounds:
============

 Setting the 'natural-language-processing' option to 'off'
 in scanley.conf closes this vulnerability.

Patch:
======

 The patch below applies to Scanley 3.0, 3.1, and 3.2.

 A new public release (Scanley 3.2.1) will be made on or
 just before May 19th, so that it is available at the same
 time as this vulnerability is made public. You can patch
 now, or just wait for the public release. The only
 difference between 3.2 and 3.2.1 will be this patch.

203

Communications

[...patch goes here...]

If you have a CVE number, include it in the pre-notification (as shown above), even though
the information is still embargoed and therefore the corresponding MITRE page will show
nothing at the time of pre-notification. Including the CVE number allows the recipient to
know with certainty that the bug they were pre-notified about is the same one they later hear
about through public channels, so they don't have to worry whether further action is neces-
sary or not, which is precisely the point of CVE numbers.

Distribute the Fix Publicly

The last step in handling a security bug is to distribute the fix publicly. In a single, compre-
hensive announcement, you should describe the problem, give the CVE number if any, de-
scribe how to work around it, and how to permanently fix it. Usually "fix" means upgrading
to a new version of the software, though sometimes it can mean applying a patch, particu-
larly if the software is normally run in source form anyway. If you do make a new release, it
should differ from some existing release by exactly the security patch. That way, conserva-
tive admins can upgrade without worrying about what else they might be affecting; they al-
so don't have to worry about future upgrades, because the security fix will be in all future re-
leases as a matter of course. (Details of release procedures are discussed in the section called
“Security Releases” [229].)

Whether or not the public fix involves a new release, do the announcement with roughly the
same priority as you would a new release: send a mail to the project's announce list, make
a new press release, etc. While you should never try to play down the existence of a securi-
ty bug out of concern for the project's reputation, you may certainly set the tone and promi-
nence of a security announcement to match the actual severity of the problem. If the securi-
ty hole is just a minor information exposure, not an exploit that allows the user's entire com-
puter to be taken over, then it may not warrant a lot of fuss. See https://www.cve.org/Re-
sourcesSupport/Glossary for a good introduction to how to think about and discuss vulnera-
bilities.

In general, if you're unsure how to treat a security problem, find someone with experience
and talk to them about it. Assessing and handling vulnerabilities is very much an acquired
skill, and it's easy to make missteps the first few times.

Further Reading on Handling Security Vulnerabilities

• https://www.cve.org/ is the official source of information about the CVE process.

• https://www.debian.org/security/cve-compatibility is a particularly clear exposition of one
open source project's use of CVE numbers.

204

https://www.cve.org/ResourcesSupport/Glossary
https://www.cve.org/ResourcesSupport/Glossary
https://www.cve.org/
https://www.debian.org/security/cve-compatibility

Communications

• The post "A minimal security response process" at https://access.red-
hat.com/blogs/766093/posts/1975833 is a good writeup from a security engineer at Red-
Hat.

• The Apache Software Foundation's guidelines on handling security vulnerabilities at
https://www.apache.org/security/committers.html are are an excellent checklist that you
can compare against to see if you're doing everything carefully.

205

https://access.redhat.com/blogs/766093/posts/1975833
https://access.redhat.com/blogs/766093/posts/1975833
https://www.apache.org/security/committers.html

Chapter 7. Packaging,
Releasing, and Daily
Development

This chapter is about how free software projects package and release their software, and how
overall development patterns organize around those goals.

A major difference between open source projects and proprietary ones is the lack of cen-
tralized control over the development team. When a new release is being prepared, this dif-
ference is especially stark: if a single corporation manages the entire development team, it
can ask them to focus on an upcoming release, putting aside new feature development and
non-critical bug fixing until the release is done. But open source developer communities are
rarely so monolithic. People work on the project for all sorts of reasons, and those not inter-
ested in helping with a given release still want to continue regular development work while
the release is going on. Because development doesn't stop, open source release processes
tend to take longer, but be less disruptive, than commercial release processes.

It's a bit like highway repair. There are two ways to fix a road: you can shut it down com-
pletely, so that a repair crew can swarm all over it at full capacity until the problem is solved,
or you can work on a couple of lanes at a time, while leaving the others open to traffic. The
first way is very efficient for the repair crew, but not for anyone else — the road is entire-
ly shut down until the job is done. The second way involves much more time and trouble for
the repair crew (now they have to work with fewer people and less equipment, in cramped
conditions, with flaggers to slow and direct traffic, etc), but at least the road remains useable,
albeit not at full capacity.

Open source projects tend to work the second way. In fact, for a mature piece of software
with several different release lines being maintained simultaneously, the project is sort of in
a permanent state of minor road repair. There are always a couple of lanes closed; a consis-
tent but low level of background inconvenience is always being tolerated by the development
group as a whole, so that releases get made on a regular schedule.

The model that makes this possible generalizes to more than just releases. It's the principle
of parallelizing tasks that are not mutually interdependent — a principle that is by no means
unique to open source development, of course, but one which open source projects imple-
ment in their own particular way. They cannot afford to annoy either the roadwork crew or
the regular traffic too much, but they also cannot afford to have people dedicated to stand-
ing by the orange cones and flagging traffic along. Thus they gravitate toward processes that
have flat, constant levels of administrative overhead, rather than peaks and valleys. Devel-

206

Packaging, Releasing,
and Daily Development

opers are generally willing to work with small but consistent amounts of inconvenience; the
predictability allows them to come and go without worrying about whether their schedule
will clash with what's happening in the project. But if the project were subject to a master
schedule in which some activities excluded other activities, the result would be a lot of de-
velopers sitting idle a lot of the time — which would be not only inefficient but boring, and
therefore dangerous, in that a bored developer is likely to soon be an ex-developer.

Release work is usually the most noticeable non-development task that happens in parallel
with development, so the methods described in the following sections are geared mostly to-
ward enabling releases. However, note that they also apply to other parallelizable tasks, such
as translations and internationalization, broad API changes made gradually across the entire
codebase, etc.

Release Numbering
Before we talk about how to make a release, let's look at how to name releases, which re-
quires knowing what releases actually mean to users. A release means that:

• Some old bugs have been fixed. This is probably the one thing users can count on being
true of every release.

• New bugs have been added. This too can usually be counted on, except sometimes in
the case of security releases or other one-offs (see the section called “Security Releas-
es” [229]).

• New features may have been added.

• New configuration options may have been added, or the meanings of old options may have
changed subtly. The installation or upgrade procedures may have changed slightly since
the last release too.

• Incompatible changes may have been introduced, for example such that the data formats
used by older versions of the software are no longer useable without undergoing some sort
of (possibly manual) one-way conversion step.

As you can see, not all of these are good things. This is why experienced users approach new
releases with some trepidation, especially when the software is mature and was already most-
ly doing what they wanted (or thought they wanted). Even the arrival of new features is a
mixed blessing, in that it may mean the software will now behave in unexpected ways.

The purpose of release numbering, therefore, is twofold: obviously the numbers should un-
ambiguously communicate the ordering of releases within a given series (i.e., by looking at
the numbers of any two releases in the same series, one can know which came later), but al-

207

Packaging, Releasing,
and Daily Development

so they should indicate as compactly as possible the degree and nature of the changes in each
release.

Some Projects Just Need Release Identifiers, Not Release Numbers.

The advice in the rest of this section only applies to projects where release number se-
mantics matter. Use your judgement: if your project isn't offering API predictability
anyway, or if it practices continuous development with auto-deployment in the way
that (for example) some Javascript projects do, then maybe you can get away with
just letting git commit IDs double as release identifiers, or with some other similar-
ly lightweight method. Just make sure to consider the question carefully, and to base
your decision on how users actually deploy and upgrade the software. When it comes
to release numbering, it's better to be overly strict than overly lax. Remember that the
project's core developers are not the main audience for release numbers; those devel-
opers already know what's happening in the project, what APIs have changed, etc. Re-
lease numbers are most important for people who don't follow the project on a daily
basis, and who are therefore naturally underrepresented in project discussions about
how strictly to adhere to a release numbering scheme. If you believe in the users, stand
up for them!

All that in a number? Well, more or less, yes. Release numbering strategies are one of the
oldest bikeshed discussions around (see the section called “The Smaller the Topic, the
Longer the Debate” [177]), and the world is unlikely to settle on a single, complete standard
anytime soon. However, a few good strategies have emerged, along with one universally
agreed-on principle: be consistent. Pick a numbering scheme, document it, and stick with it.
Your users will thank you.

Release Number Components
This section describes the usual conventions of release numbering in detail, and assumes
very little prior knowledge. It is intended mainly as a reference. If you're already familiar
with these conventions, you can skip this section.

Release numbers are groups of digits separated by dots:

Scanley 2.3
Singer 5.11.4

...and so on. The dots are not decimal points, they are merely separators; "5.3.9" would be
followed by "5.3.10". A few projects have occasionally hinted otherwise, most famously the
Linux kernel with its "0.95", "0.96"... "0.99" sequence leading up to Linux 1.0, but the con-
vention that the dots are not decimal points is now firmly established and should be consid-

208

Packaging, Releasing,
and Daily Development

ered a standard. There is no limit to the number of components (digit portions containing no
dots), but most projects do not go beyond three or four. The reasons why will become clear
later.

In addition to the numeric components, projects sometimes tack on a descriptive label such
as "Alpha" or "Beta" (see Alpha and Beta [24]), for example:

Scanley 2.3.0 (Alpha)
Singer 5.11.4 (Beta)

An Alpha or Beta qualifier means that this release precedes a future release that will have
the same number without the qualifier. Thus, "2.3.0 (Alpha)" leads eventually to "2.3.0". In
order to allow several such candidate releases in a row, the qualifiers themselves can have
meta-qualifiers. For example, here is a series of releases in the order that they would be made
available to the public:

Scanley 2.3.0 (Alpha 1)
Scanley 2.3.0 (Alpha 2)
Scanley 2.3.0 (Beta 1)
Scanley 2.3.0 (Beta 2)
Scanley 2.3.0 (Beta 3)
Scanley 2.3.0

Notice that when it has the "Alpha" qualifier, Scanley "2.3" is written as "2.3.0". The two
numbers are equivalent — trailing all-zero components can always be dropped for brevi-
ty — but when a qualifier is present, brevity is out the window anyway, so one might as well
go for completeness instead.

Other qualifiers in semi-regular use include "Stable", "Unstable", "Development", and
"RC" (for "Release Candidate"). The most widely used ones are still "Alpha" and "Beta",
with "RC" running a close third place, but note that "RC" always includes a numeric meta-
qualifier. That is, you don't release "Scanley 2.3.0 (RC)", you release "Scanley 2.3.0 (RC 1)",
followed by RC2, etc.

Those three labels, "Alpha", "Beta", and "RC", are pretty widely known now, and I don't rec-
ommend using any of the others, even though the others might at first glance seem like better
choices because they are normal words, not jargon. But people who install software from re-
leases are already familiar with the big three, and there's no reason to do things gratuitously
differently from the way everyone else does them.

Although the dots in release numbers are not decimal points, they do indicate place-value
significance. All "0.X.Y" releases precede "1.0" (which is equivalent to "1.0.0", of course).
"3.14.158" immediately precedes "3.14.159", and non-immediately precedes "3.14.160" as
well as "3.15.anything", and so.

209

Packaging, Releasing,
and Daily Development

A consistent release numbering policy enables a user to look at two release numbers for the
same piece of software and tell, just from the numbers, the important differences between
those two releases. In a typical three-component system, the first component is the major-
 number, the second is the minor number, and the third is the micro number (sometimes al-
so called the "patch" number). For example, release "2.10.17" is the eighteenth micro release
(or patch release) in the eleventh minor release line within the second major release series1.
The words "line" and "series" are used informally here, but they mean what one would ex-
pect: a major series is simply all the releases that share the same major number, and a minor
series (or minor line) consists of all the releases that share the same minor and major num-
ber. That is, "2.4.0" and "3.4.1" are not in the same minor series, even though they both have
"4" for their minor number; on the other hand, "2.4.0" and "2.4.2" are in the same minor line,
though they are not adjacent if "2.4.1" was released between them.

The meanings of these numbers themselves are also roughly what you'd expect: an incre-
ment of the major number indicates that major changes happened; an increment of the minor
number indicates minor changes; and an increment of the micro number indicates really triv-
ial changes. Some projects add a fourth component, usually called the patch number, for es-
pecially fine-grained control over the differences between their releases (confusingly, other
projects use "patch" as a synonym for "micro" in a three-component system, as mentioned
earlier). There are also projects that use the last component as a build number, incremented
every time the software is built and representing no change other than that build. This helps
the project link every bug report with a specific build, and is probably most useful when bi-
nary packages are the default method of distribution.

Although there are many different conventions for how many components to use, and what
the components mean, the differences tend to be minor — you get a little leeway, but not a
lot. The next two sections discuss some of the most widely used conventions.

Semantic Versioning
Most projects have rules about what kinds of changes are allowed into a release if one is on-
ly incrementing the micro number, different rules for the minor number, and still different
ones for the major number. Here I will describe a policy that has been used successfully by
multiple projects. You may want to just adopt this policy in your own project, but even if
you don't, it's still a good example of the kind of information release numbers should convey.
This policy is now formalized as Semantic Versioning at http://semver.org/.2

1. Changes to the micro number only (that is, changes within the same minor line) must be
both forward- and backward-compatible. The changes should be bug fixes only, or very

1Not seventeenth and tenth, because numbering starts from 0, not 1 in the minor and micro components.
2Except that the semver.org standard apparently does not include the forward-compatibility requirement for increments
in the micro (patch) number.

210

http://semver.org/

Packaging, Releasing,
and Daily Development

small enhancements to existing features. New features should not be introduced in a micro
release.

2. Changes to the minor number (that is, within the same major line) must be back-
ward-compatible, but not necessarily forward-compatible. It's normal to introduce new
features in a minor release, but usually not too many new features at once.

3. Changes to the major number mark compatibility boundaries. A new major release can be
forward- and backward-incompatible. A major release is expected to have new features,
and may even have entire new feature sets.

What backward-compatible and forward-compatible mean, exactly, depends on what your
software does, but in context they are usually not open to much interpretation. For example,
if your project is a client/server application, then "backward-compatible" means that upgrad-
ing the server to 2.6.0 should not cause any existing 2.5.4 clients to lose functionality or be-
have differently than they did before (except for bugs that were fixed, of course). On the oth-
er hand, upgrading one of those clients to 2.6.0, along with the server, might make new func-
tionality available for that client, functionality that 2.5.4 clients don't know how to take ad-
vantage of. If that happens, then the upgrade is not "forward-compatible": clearly you can't
now downgrade that client back to 2.5.4 and keep all the functionality it had at 2.6.0, since
some of that functionality was new in 2.6.0.

This is why micro releases are essentially for bug fixes only. They must remain compatible
in both directions: if you upgrade from 2.5.3 to 2.5.4, then change your mind and downgrade
back to 2.5.3, no functionality should be lost. Of course, the bugs fixed in 2.5.4 would reap-
pear after the downgrade, but you wouldn't lose any features, except insofar as the restored
bugs interfere with the use of some existing features.

Client/server protocols are just one of many possible compatibility domains. Another is da-
ta formats: does the software write data to permanent storage? If so, the formats it reads and
writes need to follow the compatibility guidelines promised by the release number policy.
Version 2.6.0 needs to be able to read the files written by 2.5.4, but may silently upgrade the
format to something that 2.5.4 cannot read, because the ability to downgrade is not required
across a minor number boundary. If your project distributes code libraries for other programs
to use, then APIs are a compatibility domain too: you must make sure that source and bina-
ry compatibility rules are spelled out in such a way that the informed user need never won-
der whether or not it's safe to upgrade in place. She should be able to look at the numbers and
know instantly.

In this system, you don't get a chance for a fresh start until you increment the major num-
ber. This can often be a real inconvenience: there may be features you wish to add, or pro-
tocols that you wish to redesign, that simply cannot be done while maintaining compatibil-
ity. There's no magic solution to this, except to try to design things in an extensible way in
the first place (a topic easily worth its own book, and certainly outside the scope of this one).

211

Packaging, Releasing,
and Daily Development

But publishing a release compatibility policy, and adhering to it, is an inescapable part of dis-
tributing software. One nasty surprise can alienate a lot of users. The policy just described is
good partly because it's already quite widespread, but also because it's easy to explain and to
remember, even for those not already familiar with it.

It is generally understood that these rules do not apply to pre-1.0 releases (although your re-
lease policy should probably state so explicitly, just to be clear). A project that is still in ini-
tial development can release 0.1, 0.2, 0.3, and so on in sequence, until it's ready for 1.0, and
the differences between those releases can be arbitrarily large. Micro numbers in pre-1.0 re-
leases are optional. Depending on the nature of your project and the differences between the
releases, you might find it useful to have 0.1.0, 0.1.1, etc, or you might not. Conventions for
pre-1.0 release numbers are fairly loose, mainly because people understand that strict com-
patibility constraints would hamper early development too much, and because early adopters
tend to be forgiving anyway.

Remember that all these injunctions only apply to this particular three-component system.
Your project could easily come up with a different three-component system, or even decide
it doesn't need such fine granularity and use a two-component system instead. The important
thing is to decide early, publish exactly what the components mean, and stick to it.

The Even/Odd Strategy
Some projects use the parity of the minor number component to indicate the stability of the
software: even means stable, odd means unstable. This applies only to the minor number, not
the major or micro numbers. Increments in the micro number still indicate bug fixes (no new
features), and increments in the major number still indicate big changes, new feature sets,
etc.

The advantage of the even/odd system, which has been used by the Linux kernel project3

among others, is that it offers a way to release new functionality for testing without sub-
jecting production users to potentially unstable code. People can see from the numbers that
"2.4.21" is okay to install on their live web server, but that "2.5.1" should probably stay con-
fined to experimental servers. The development team handles the bug reports that come in
from the unstable (odd-minor-numbered) series, and when things start to settle down after
some number of micro releases in that series, they increment the minor number (thus making
it even), reset the micro number back to "0", and release a presumably stable package.

This system preserves, or at least does not conflict with, the compatibility guidelines given
earlier. It simply overloads the minor number with some extra information. This forces the
minor number to be incremented about twice as often as would otherwise be necessary, but
there's no real harm in that. The even/odd system is probably best for projects that have very

3Though Linux no longer uses it; see https://en.wikipedia.org/wiki/Linux_kernel#History.

212

https://en.wikipedia.org/wiki/Linux_kernel#History

Packaging, Releasing,
and Daily Development

long release cycles, and which by their nature have a high proportion of conservative users
who value stability above new features. It is not the only way to get new functionality tested
in the wild, however. In the section called “Stabilizing a Release” [215] we will examine
another, perhaps more common, method of releasing potentially unstable code to the public,
in which the release number is further marked so that people have a clear picture of the risk/
benefit trade-offs immediately on seeing the release's name.

Release Branches
From a developer's point of view, a free software project is in a state of continuous release.
Developers usually run the latest available code at all times, because they want to spot bugs,
and because they follow the project closely enough to be able to stay away from currently
unstable areas of the feature space. They often update their copy of the software every day,
sometimes more than once a day, and when they check in a change, they can reasonably ex-
pect that every other developer will have it within a day or two.

How, then, should the project make a formal release? Should it simply take a snapshot of
the tree at a moment in time, package it up, and hand it to the world as, say, version "3.5.0"?
Common sense says no. First, there may be no moment in time when the entire development
tree is clean and ready for release. Newly-started features could be lying around in various
states of completion. Someone might have checked in a major change to fix a bug, but the
change could be controversial and under debate at the moment the snapshot is taken. If so, it
wouldn't work to simply delay the snapshot until the debate ends, because in the meantime
another, unrelated debate could start, and then you'd have wait for that one to end too. This
process is not guaranteed to halt.

In any case, using full-tree snapshots for releases would inevitably interfere with ongoing de-
velopment work even if the tree could be put into a releasable state. Say this snapshot is go-
ing to be "3.5.0"; presumably, the next snapshot would be "3.5.1", and would contain mostly
fixes for bugs found in the 3.5.0 release. But if both are snapshots from the same tree, what
are the developers supposed to do in the time between the two releases? They can't be adding
new features; the compatibility guidelines prevent that. But not everyone will be enthusias-
tic about fixing bugs in the 3.5.0 code. Some people may have new features they're trying to
complete, and will become irate if they are forced to choose between sitting idle and working
on things they're not interested in, just because the project's release processes demand that
the development tree remain unnaturally quiescent.

The solution to these problems is to always use a release branch. A release branch is just a
branch in the version control system (see branch [77]), on which the code destined for the
corresponding release can be isolated from mainline development.

The concept of release branches is certainly not original to free software; many proprietary
development organizations use them too. However, in closed-source environments, release

213

Packaging, Releasing,
and Daily Development

branches are sometimes considered a luxury — a kind of theoretical "best practice" that can,
in the heat of a major deadline, be dispensed with while everyone on the team scrambles to
stabilize the main tree.

Release branches are close to a necessity in open source projects, however. Even though de-
velopers typically create their own short-lived branches for work on individual bugfixes and
features, they also expect to be able to merge their work to the common "main" branch as
soon as the work is ready. If the main branch is artificially frozen — that is, gated to allow
release-related changes only — then overall development momentum is slowed, and devel-
opers become frustrated that their work is delayed from appearing in the shared arena where
it would be most easily usable by others. Furthermore, the release itself may suffer if the few
people working on it are hurrying to finish so everyone else could get back to regular work-
ing order on the main branch. Finally, having a release branch facilitates developer autono-
my: many developers are happy to contribute some of their attention to a release branch, as
long as that's a choice they can make according to their own schedules and interests in the
same way that they do regarding feature and bugfix branches.

Mechanics of Release Branches
The exact mechanics of creating a release branch depend on your version control system,
of course, but the general concepts are the same in most systems. A branch usually sprouts
from another branch or from the main line. Commonly, the main line is where developers'
changes are first integrated, unfettered by release constraints, and the release branch — say,
the one leading to the "1.0" release — sprouts from main. (The details of how to create and
manage branches in your particular version control system are beyond the scope of this book,
but the semantics are roughly the same everywhere.) Note that you might want to name the
branch "1.0.x" (with a literal "x") instead of "1.0.0". That way you can use the same minor
line — i.e., the same branch — as the branch source for all the micro releases in that line.

The social and technical process of stabilizing the branch for release is covered in the sec-
tion called “Stabilizing a Release” [215]. Here we are concerned just with the high-lev-
el version control actions that relate to the release process. When the release branch is stabi-
lized and ready, it is time to tag a snapshot from the branch (see tag or snapshot [77]) with a
name like, e.g., "1.0.0". The resultant tag represents the exact state of the project's source tree
in the 1.0.0 release (this is useful when developers need to compare against an old version
while tracking down a bug). The next micro release in the same line is likewise prepared on
the 1.0.x branch, and when it is ready, a tag is made for 1.0.1. Lather, rinse, repeat for 1.0.2,
and so on. When it's time to start thinking about a 1.1.x release, make a new branch from
main.

Maintenance can continue in parallel along both 1.0.x and 1.1.x, and releases can be made
independently from both lines (while new development work happens either directly on the

214

Packaging, Releasing,
and Daily Development

main branch or in short-lived "feature branches" that get merged into the main branch as
soon as they're ready).

In fact, it is not unusual to publish near-simultaneous releases from two different lines.4 The
older series is recommended for more conservative site administrators, who may not want to
make the big jump from (say) 1.0.5 to 1.1 without careful preparation, and so the project re-
leases 1.0.6 in parallel with 1.1. Meanwhile, more adventurous people usually take the most
recent release on the highest line, to make sure they're getting the latest features, even at the
risk of greater instability.

This is not the only release branch strategy, of course. In some circumstances it may not
even be the best, though it works pretty well for many projects. Use any strategy that seems
to work, but remember the main points: the purpose of a release branch is to isolate release
work from the fluctuations of daily development, and to give the project a physical enti-
ty — the release branch — around which to organize its release process. That process is de-
scribed in detail in the next section.

Stabilizing a Release
Stabilization is the process of getting a release branch into a releasable state; that is, of decid-
ing which changes will be in the release, which will not, and shaping the branch content ac-
cordingly.

There's a lot of potential grief contained in the word "deciding". The last-minute feature rush
is a familiar phenomenon in collaborative software projects: as soon as developers see that a
release is about to happen, they scramble to finish their current changes, in order not to miss
the boat. This, of course, is the exact opposite of what you want at release time. It would be
much better for people to work on features at a comfortable pace, and not worry too much
about whether their changes make it into this release or the next one. The more changes one
tries to cram into a release at the last minute, the less stable the code is and (usually) the
more new bugs are created.

4See the section called “Maintaining Multiple Release Lines” [229].

215

Packaging, Releasing,
and Daily Development

Time-Based Releases vs Feature-Based Releases

Some software projects use "time-based releases", as opposed to "feature-based
releases". With time-based releases, the project puts out a new releases at an ab-
solutely regular rhythm, typically something like every six months, and the rule is
that the release goes out no matter what new features and bugfixes are ready or not
ready — anything that isn't ready simply isn't included in the release.5 Developers who
didn't make the deadline are told to just wait for the next train, but this is easy for them
to accept because they can count on the next train coming by in exactly six months (or
whatever the release period is) anyway. The advice in this section applies to both time-
based and feature-based releases, but keep both methods in mind as you read. Depend-
ing on your project's goals or culture, one or other other method may be more appro-
priate.6

Most software engineers agree in theory on rough criteria for what changes should be al-
lowed into a release line during its stabilization period. Obviously, fixes for severe bugs can
go in, especially for bugs without workarounds. Documentation updates are fine, as are fix-
es to error messages (except when they are considered part of the interface and must remain
stable). Many projects also allow certain kinds of low-risk or non-core changes to go in dur-
ing stabilization, and may have formal guidelines for measuring risk. But no amount of for-
malization can obviate the need for human judgement. There will always be cases where the
project simply has to make a decision about whether a given change can go into a release.
The danger is that since each person wants to see their own favorite changes admitted into
the release, then there will be plenty of people motivated to allow changes and not enough
people motivated to resist them.

Thus, the process of stabilizing a release is mostly about creating mechanisms for saying
"no". The trick for open source projects, in particular, is to come up with ways of saying "no"
that won't result in too many hurt feelings or disappointed developers, and also won't prevent
deserving changes from getting into the release. There are many different ways to do this. It's
pretty easy to design systems that satisfy these criteria, once the team has focused on them
as the important criteria. Here I'll briefly describe two of the most popular systems, at the ex-

5While any release methodology requires some degree of branch management, time-based releases imply that the de-
velopment team must use a fairly strict gateway policy at all times. Development work must stay isolated from release
branches until that work is truly ready to be shipped. Otherwise, unfinished code might be hard to extricate from the re-
lease branch when release time rolls around.
6For an alternative approach, you may wish to read Martin Michlmayr's Ph.D. thesis Quality Improvement in Volunteer
Free and Open Source Software Projects: Exploring the Impact of Release Management (https://www.cyrius.com/pub-
lications/michlmayr-phd.html). It is about using time-based release processes, as opposed to feature-based, in large free
software projects. See also https://www.cyrius.com/publications/michlmayr_hunt_probert-release_management.pdf, by
Martin Michlmayr, Francis Hunt, and David Probert. Finally, Michlmayr gave a talk at Google on the subject: https://
www.youtube.com/watch?v=IKsQsxubuAA.

216

https://www.cyrius.com/publications/michlmayr-phd.html
https://www.cyrius.com/publications/michlmayr-phd.html
https://www.cyrius.com/publications/michlmayr_hunt_probert-release_management.pdf
https://www.youtube.com/watch?v=IKsQsxubuAA
https://www.youtube.com/watch?v=IKsQsxubuAA

Packaging, Releasing,
and Daily Development

treme ends of the spectrum, but don't let that discourage your project from being creative.
Plenty of other arrangements are possible; these are just two that I've seen work in practice.

Dictatorship by Release Owner
The group agrees to let one person be the release owner. This person has final say over what
changes make it into the release. Of course, it is normal and expected for there to be discus-
sions and arguments, but in the end the group must grant the release owner sufficient author-
ity to make final decisions. For this system to work, it is necessary to choose someone with
the technical competence to understand all the changes, and the social standing and people
skills to navigate the discussions leading up to the release without causing too many hurt
feelings.

A common pattern is for the release owner to say "I don't think there's anything wrong with
this change, but we haven't had enough time to test it yet, so it shouldn't go into this release."
It helps a lot if the release owner has broad technical knowledge of the project, and can give
reasons why the change could be potentially destabilizing (for example, its interactions with
other parts of the software, or portability concerns). People will sometimes ask for such de-
cisions to be justified, or will argue that a change is not as risky as it looks. These conversa-
tions need not be confrontational, as long as the release owner is able to consider all the ar-
guments objectively and not reflexively dig in her heels.

Note that the release owner need not be the same person as the project leader (in cases where
there is a project leader at all; see the section called “Benevolent Dictators” [103]). In fact,
sometimes it's good to make sure they're not the same person. The skills that make a good
development leader are not necessarily the same as those that make a good release owner.
In something as important as the release process, it may be wise to have someone provide a
counterbalance to the project leader's judgement. In that case, the project leader needs to re-
member that overriding a decision by the release owner will undermine the release owner's
authority; that alone may be enough reason, in most situations, to let the release owner win
when there is a disagreement.

Contrast the release owner role with the less dictatorial role described in the section called
“Release Manager” [220].

Voting on Changes
At the opposite extreme from dictatorship by release owner, developers can simply vote on
which changes to include in the release. However, since the most important function of re-
lease stabilization is to exclude changes, it's important to design the voting system in such a
way that getting a change into the release involves positive action by multiple developers. In-
cluding a change should need more than just a simple majority (see the section called “Who

217

Packaging, Releasing,
and Daily Development

Votes?” [109]). Otherwise, one vote for and none against a given change would suffice to
get it into the release, and an unfortunate dynamic would be set up whereby each developer
would vote for her own changes, yet would be reluctant to vote against others' changes, for
fear of possible retaliation. To avoid this, the system should be arranged such that subgroups
of developers must act in cooperation to get any change into the release. This not only means
that more people review each change, it also makes any individual developer less hesitant
to vote against a change, because she knows that no particular one among those who voted
for it would take her vote against as a personal affront. The greater the number of people in-
volved, the more the discussion becomes about the change and less about the individuals.

The system used for many years in the Subversion project seems to have struck a good bal-
ance, so I'll recommend it here. In order for a change to be applied to the release branch, at
least three developers must vote in favor of it, and none against. A single "no" vote is enough
to stop the change from being included; that is, a "no" vote in a release context is equivalent
to a veto (see the section called “Vetoes” [111]). Naturally, any such vote must be accompa-
nied by a justification, and in theory the veto could be overridden if enough people feel it is
unreasonable and force a special vote over it. In practice, this never happens. People are con-
servative around releases anyway, and when someone feels strongly enough to veto the in-
clusion of a change, there's usually a good reason for it.

Because the release procedure is deliberately biased toward conservatism, the justifications
offered for vetoes are sometimes procedural rather than technical. For example, a person may
feel that a change is well-written and unlikely to cause any new bugs, but vote against its
inclusion in a micro release simply because it's too big — perhaps it adds a new feature, or
in some subtle way fails to fully follow the compatibility guidelines. I've occasionally even
seen developers veto something because they simply had a gut feeling that the change need-
ed more testing, even though they couldn't spot any bugs in it by inspection. People grum-
bled a little bit, but the vetoes stood and the change was not included in the release (I don't
remember if any bugs were found in later testing or not, though).

Managing Collaborative Release Stabilization

If your project chooses a change-voting system for releases, the physical mechanics of set-
ting up ballots and casting votes must be as convenient as possible. Although there is plen-
ty of open source electronic voting software available, setting it up and using it is not worth
the overhead. Instead, just do something easy and simple, such as putting a text file, called
STATUS or VOTES or something like that, in the release branch. This file lists each proposed
change — any developer can propose a change for inclusion — along with all the votes for
and against it, plus any notes or comments. (Proposing a change doesn't necessarily mean
voting for it, by the way, although the two often go together.) An entry in such a file might
look like this:

218

Packaging, Releasing,
and Daily Development

* commit b31910a7180fc (issue #49)
 Prevent client/server handshake from happening twice.
 Justification:
 Avoids extra network turnaround;
 small change and easy to review.
 Notes:
 Discussed in https://.../msg-7777.html
 and other messages in that thread.
 Votes:
 +1: jsmith, kimf
 -1: tmartin (breaks compatibility with some
 pre-1.0 servers; true, those
 servers are buggy, but why be
 incompatible if we don't have to?)

In this case, the change acquired two positive votes, but was vetoed by tmartin, who gave
the reason for the veto in a parenthetical note. The exact format of the entry doesn't matter;
whatever your project settles on is fine — perhaps tmartin's explanation for the veto should
go up in the "Notes:" section, or perhaps the change description should get a "Description:"
header to match the other sections. The important things are that all the information need-
ed to evaluate the change is easily accessible and that the mechanism for casting votes is
as lightweight as possible. The proposed change is referred to by its revision number in the
repository (in the above case a single commit, b31910a7180fc, although a proposed change
could just as easily consist of multiple commits). The revision is assumed to refer to a change
made on the main branch; if the change were already on the release branch, there would be
no need to vote on it.7

Those proposing or voting for a change are responsible for making sure it applies cleanly
to the release branch, that is, applies without conflicts (see conflict [78]). If there are con-
flicts, then the entry should point to a temporary branch that holds an adjusted version of the
change, for example:

* r13222, r13223, r13232
 Rewrite libsvn_fs_fs's auto-merge algorithm
 Justification:
 unacceptable performance (>50 minutes for a small commit) in
 a repository with 300,000 revisions
 Branch:
 1.1.x-fs-automerge-rewrite

7For projects on a Git hosting platform, a "merge request" or "pull request" ID can be the way to uniquely identify a
change.

219

Packaging, Releasing,
and Daily Development

 Votes:
 +1: epg, ghudson

That example is taken from real life; it comes from the STATUS file for the Subversion 1.1.4
release process. Notice how it uses the original revisions as canonical handles on the change,
even though there is also a branch with a conflict-adjusted version of the change (the branch
also combines the three mainline revisions into one, r13517, to make it easier to merge the
change into the release, should it get approval). The original revisions are provided because
they're still the easiest entity to review, since they have the original log messages. The tem-
porary branch wouldn't have those log messages. In order to avoid duplication of informa-
tion (see the section called “Singularity of Information” [81]), the branch's log message for
r13517 should simply say "Adjust r13222, r13223, and r13232 for backport to 1.1.x branch."
All other information about the changes can be chased down at their original revisions.

Release Manager

The actual process of merging (see merge or port [77]) approved changes into the release
branch can be performed by any developer. There does not need to be one person whose
job it is to merge changes; if there are a lot of changes, it can be better to spread the burden
around.

However, although both voting and merging happen in a decentralized fashion, in practice
there are usually one or two people driving the release process. This role is sometimes for-
mally blessed as release manager, but it is quite different from a release owner (see the sec-
tion called “Dictatorship by Release Owner” [217]) who has final say over the changes.
Release managers keep track of how many changes are currently under consideration, how
many have been approved, how many seem likely to be approved, etc. If they sense that im-
portant changes are not getting enough attention, and might be left out of the release for lack
of votes, they will gently nag other developers to review and vote. When a batch of changes
are approved, these people will often take it upon themselves to merge them into the release
branch; it's fine if others leave that task to them, as long as everyone understands that the re-
lease managers are not obligated to do all the work unless they have explicitly committed to
it. When the time comes to put the release out the door (see the section called “Testing and
Releasing” [226]), the release managers also take care of the logistics of creating the final
release packages, collecting digital signatures, uploading the packages, and making the pub-
lic announcement.

Packaging
The canonical form for distribution of free software is as source code. This is true regard-
less of whether the software normally runs in source form (i.e., interpreted, like Perl, Python,

220

Packaging, Releasing,
and Daily Development

PHP, etc) or is typically compiled first (like C, C++, Java, Rust, etc). With compiled soft-
ware, most users will probably not compile the sources themselves, but will instead install
from pre-built binary packages (see the section called “Binary Packages” [225]). How-
ever, those binary packages are still derived from a particular source distribution. The point
of the source package is to unambiguously define the release. When the project distributes
"Scanley 2.5.0", what it means, specifically, is "The tree of source code files that, when com-
piled (if necessary) and installed, produces Scanley 2.5.0."

There is a fairly strict standard for how source releases should look. One will occasionally
see deviations from this standard, but they are the exception, not the rule. Unless there is a
compelling reason to do otherwise, your project should follow this standard too.

Format
The source code should be shipped in the standard formats for transporting directory trees.
For Unix and Unix-like operating systems, the convention is to use TAR format, compressed
by compress, gzip, bzip or bzip2. For MS Windows, the standard method for distributing
directory trees is zip format, which compresses automatically. For JavaScript projects, it
is customary to ship the "minified"8 versions of the files together with the human-readable
source files.

Name and Layout
The name of the package should consist of the software's name plus the release number, plus
the format suffixes appropriate for the archive type. For example, Scanley 2.5.0, packaged
for Unix using GNU Zip (gzip) compression, would look like this:

scanley-2.5.0.tar.gz

or for Windows using zip compression:

scanley-2.5.0.zip

Either of these archives, when unpacked, should create a single new directory tree named
scanley-2.5.0 in the current directory. Underneath the new directory, the source code
should be arranged in a layout ready for compilation (if compilation is needed) and instal-
lation. In the top level of new directory tree, there should be a plain text README file ex-
plaining what the software does and what release this is, and giving pointers to other re-
sources, such as the project's web site, other files of interest, etc. Among those other files
should be an INSTALL file, sibling to the README file, giving instructions on how to build

8See https://en.wikipedia.org/wiki/Minification_%28programming%29.

221

https://en.wikipedia.org/wiki/Minification_%28programming%29

Packaging, Releasing,
and Daily Development

and install the software for all the operating systems it supports. As mentioned in the section
called “How to Apply a License to Your Software” [35], there should also be a LICENSE or
COPYING file, giving the software's terms of distribution.9

There should also be a CHANGES file (sometimes called NEWS or something else), explain-
ing what's new in this release.10 The CHANGES file accumulates changelists for all releas-
es, in reverse chronological order, so that the list for this release appears at the top of the
file. Completing that list is usually the last thing done on a stabilizing release branch; some
projects write the list piecemeal as they're developing, others prefer to save it all up for the
end and have one person write it, getting information by combing the version control logs.
The list looks something like this:

Version 2.5.0
(20 December 2022, from branch 2.5.x)
http://scanley.org/repos/tags/2.5.0/

 New features and enhancements:
 * Added regular expression queries (issue #53)
 * Added support for UTF-16 documents
 * Documentation translated into Malagasy, Polish, Russian
 * ...

 Bugfixes:
 * fixed reindexing bug (issue #945)
 * fixed some query bugs (issues #815, #1007, #1008)
 * ...

The list can be as long as necessary, but don't bother to describe every little bugfix and fea-
ture enhancement in detail. The point is to give users an overview of what they would gain
by upgrading to the new release, and to tell them about any incompatible changes. In fact, the
changelist is customarily included in the announcement email (see the section called “Test-
ing and Releasing” [226]), so write it with that audience in mind.

9Your all-caps files — README, INSTALL, etc — may of course have ".md" extensions to indicate Markdown
(https://daringfireball.net/projects/markdown/) format, or ".txt" to indicate plain text, etc.
10Sumana Harihareswara points out that there is a distinction between a detailed CHANGES file and release notes. Her
full post at harihareswara.net/posts/2024/changelogs-and-release-notes [https://harihareswara.net/posts/2024/changel-
ogs-and-release-notes/] is very much worth reading. In the part I'll quote here, she uses the word "changelog", but she
means by it what I called a CHANGES or NEWS file:

"Release notes are a prose summary of what's changed, which exist in addition to a changelog (the release notes might
link to the changelog or include a copy at the bottom), and which focus on changes the user might perceive. ... If a
changelog is too overwhelming and an end user is left thinking, 'but what matters to me?' they can go read the release
notes."

222

https://daringfireball.net/projects/markdown/
https://harihareswara.net/posts/2024/changelogs-and-release-notes/
https://harihareswara.net/posts/2024/changelogs-and-release-notes/
https://harihareswara.net/posts/2024/changelogs-and-release-notes/

Packaging, Releasing,
and Daily Development

The actual layout of the source code inside the tree should be the same as, or as similar as
possible to, the source code layout one would get by checking out the project directly from
its version control repository. Sometimes there are a few differences, for example because
the package contains some generated files needed for configuration and compilation (see
the section called “Compilation and Installation” [224]), or because the distribution in-
cludes third-party software that is not maintained by the project, but that is required and that
users are not likely to already have. But even if the distributed tree corresponds exactly to
some development tree in the version control repository, the distribution itself should not be
a working copy (see working copy or working files [76]). The release is supposed to repre-
sent a static reference point — a particular, unchangeable configuration of source files. If it
were a working copy, the danger would be that the user might update it, and afterward think
that he still has the release when in fact he has something different.

The package should be the same regardless of the packaging. The release — that is, the pre-
cise entity referred to when someone says "Scanley 2.5.0" — is the tree created by unpacking
a zip file or tarball. So the project might offer all of these for download:

scanley-2.5.0.tar.bz2
scanley-2.5.0.tar.gz
scanley-2.5.0.zip

...but the source tree created by unpacking them would be the same. That source tree itself is
the distribution; the form in which it is downloaded is merely a matter of convention or con-
venience. Certain minor differences between source packages are allowable: for example,
in the Windows package, text files may have lines ending with CRLF (Carriage Return and
Line Feed), while Unix packages would use just LF. The trees may be arranged slightly dif-
ferently between source packages destined for different operating systems, too, if those oper-
ating systems require different sorts of layouts for compilation. However, these are all basi-
cally trivial transformations. The basic source files should be the same across all the packag-
ings of a given release.

To Capitalize or Not to Capitalize

When referring to a project by name, people generally capitalize it as a proper noun,
and capitalize acronyms if there are any: "MySQL 5.0", "Scanley 2.5.0", etc. Whether
this capitalization is reproduced in the package name is up to the project. Either Scan-
ley-2.5.0.tar.gz or scanley-2.5.0.tar.gz would be fine, for example (I per-
sonally prefer the latter, because I don't like to make people hit the shift key, but plenty of
projects ship capitalized packages). The important thing is that the directory created by un-
packing the tarball use the same capitalization. There should be no surprises: the user must
be able to predict with perfect accuracy the name of the directory that will be created when
she unpacks a distribution.

223

Packaging, Releasing,
and Daily Development

Pre-Releases

When shipping a pre-release or candidate release, the qualifier is a part of the release num-
ber, so include it in the name of the package's name. For example, the ordered sequence
of alpha and beta releases given earlier in the section called “Release Number Compo-
nents” [208] would result in package names like this:

scanley-2.3.0-alpha1.tar.gz
scanley-2.3.0-alpha2.tar.gz
scanley-2.3.0-beta1.tar.gz
scanley-2.3.0-beta2.tar.gz
scanley-2.3.0-beta3.tar.gz
scanley-2.3.0.tar.gz

The first would unpack into a directory named scanley-2.3.0-alpha1, the second into
scanley-2.3.0-alpha2, and so on.

Compilation and Installation
For software requiring compilation or installation from source, there are usually standard
procedures that experienced users expect to be able to follow. For example, for programs
written in C, C++, or certain other compiled languages, the standard for a long time under
Unix-like systems was for the user to type:

 $./configure
 $ make
 $ sudo make install

The first command autodetects as much about the environment as it can and prepares for the
build process, the second command builds the software in place (but does not install it), and
the last command installs it on the system.

This is not the only standard, though it has historically been one of the most widespread.
These days there are often instructions for how to deploy into a popular container environ-
ment such as Docker as well. Furthermore, other programming languages have their own
standards for building and installing packages. If it's not obvious to you what the applica-
ble standards are for your project, ask an experienced developer; you can safely assume that
some standard applies, even if you don't yet know it.

Whatever the appropriate standards for your project are, don't deviate from them unless you
absolutely must. Standard installation procedures are practically spinal reflexes for a lot of
system administrators. If they see familiar invocations documented in your project's INS-

224

Packaging, Releasing,
and Daily Development

TALL file, that instantly raises their faith that your project is generally aware of conventions,
and that it is likely to have gotten other things right as well. Also, as discussed in the section
called “Downloads” [24], having a standard build procedure pleases potential developers.

On Windows, the standards for building and installing are a bit less settled. For projects re-
quiring compilation, the general convention seems to be to ship a tree that can fit into the
workspace/project model of the standard Microsoft development environments (Developer
Studio, Visual Studio, VS.NET, MSVC++, etc). Depending on the nature of your software,
it may be possible to offer a Unix-like build option on Windows using MinGW or Cygwin.
And of course, if you're using a language or programming framework that comes with its
own build and install conventions — e.g., Python — you should simply use whatever the
standard method is for that framework, whether on Windows, Unix, Mac OS X, or any other
operating system.

Be willing to put in a lot of extra effort in order to make your project conform to the relevant
build or installation standards. Building and installing is an entry point: it's okay for things to
get harder after that, if they absolutely must, but it would be a shame for the user's or devel-
oper's very first interaction with the software to require unexpected steps.

Binary Packages
Although the formal release is a source code package, users often install software from bina-
ry packages, either provided by their operating system's software distribution mechanism, or
obtained manually from the project web site or from some third party. Here, "binary" doesn't
necessarily mean "compiled"; it's a general term for a pre-configured form of the package
that allows the user to install it on her computer without going through the usual source-
based build and install procedures. On RedHat GNU/Linux, it is the RPM system; on Debian
GNU/Linux, it is the APT (.deb) system; etc.

Whether these binary packages are assembled by people closely associated with the project,
or by distant third parties, users are going to treat them as equivalent to the project's official
releases, and will file tickets in the project's bug tracker based on the behavior of the binary
packages. Therefore, it is in the project's interest to provide packagers with clear guidelines,
and work closely with them to ensure that what they produce represents the software fairly
and accurately.

The main thing packagers need to know is that they should always base their binary packages
on an official source release. Sometimes packagers are tempted to pull an unstable incarna-
tion of the code from the repository, or to include selected changes that were committed after
the release was made, in order to provide users with certain bug fixes or other improvements.
The packager thinks he is doing his users a favor by giving them the more recent code, but
actually this practice can cause a great deal of confusion. Projects are prepared to receive re-
ports of bugs found in released versions, and bugs found in recent mainline and major branch

225

Packaging, Releasing,
and Daily Development

code (that is, found by people who deliberately run bleeding edge code). When a bug report
comes in from these sources, the responder will often be able to confirm immediately that the
bug is known to be present in that snapshot, and perhaps that it has since been fixed and that
the user should upgrade or wait for the next release. If it is a previously unknown bug, know-
ing the precise release makes it easier to reproduce and easier to categorize in the tracker.

However, projects are not prepared to receive bug reports based on unspecified intermedi-
ate or hybrid versions. Such bugs can be hard to reproduce; also, they may be due to unex-
pected interactions between individual changes pulled together from different development
stages, and thereby cause misbehaviors that the project's developers should not have to take
the blame for. I have even seen dismayingly large amounts of time wasted because a bug was
absent when it should have been present: someone was running a slightly patched-up ver-
sion, based on (but not identical to) an official release, and when the predicted bug did not
happen, everyone had to dig around a lot to figure out why.

Still, there will sometimes be circumstances when a packager insists that modifications to
the source release are necessary.11 Packagers should be encouraged to bring this up with the
project's developers and describe their plans. They may get approval, but failing that, they
will at least have notified the project of their intentions, so the project can watch out for un-
usual bug reports. The developers may respond by putting a disclaimer on the project's web
site, and may ask that the packager do the same thing in the appropriate place, so that users
of that binary package know what they are getting is not exactly the same as what the project
officially released. There need be no animosity in such a situation, though unfortunately
there often is. It's just that packagers have a slightly different set of goals from developers.
The packagers mainly want the best out-of-the-box experience for their users. The devel-
opers want that too, of course, but they also need to ensure that they know what versions of
the software are out there, so they can receive coherent bug reports and make compatibility
guarantees. Sometimes these goals conflict. When they do, it's good to keep in mind that the
project has no control over the packagers, and that the bonds of obligation run both ways. It's
true that the project is doing the packagers a favor simply by producing the software. But the
packagers are also doing the project a favor, by taking on a mostly unglamorous job in order
to make the software more widely available — often orders of magnitude more available. It's
fine to disagree with packagers, but don't flame them; just try to work things out as best you
can.

Testing and Releasing
Once the source distribution is produced from the stabilized release branch, the public part of
the release process begins. But before the distribution is made available to the world at large,

11 https://en.wikipedia.org/wiki/Mozilla_Corporation_software_rebranded_by_the_Debian_project#Iceweasel gives a
well-known example of this.

226

https://en.wikipedia.org/wiki/Mozilla_Corporation_software_rebranded_by_the_Debian_project#Iceweasel

Packaging, Releasing,
and Daily Development

it should be tested and approved by some minimum number of developers, usually three or
more. That approval must then be signaled to the world at large, using digital signatures and
identifying hashes.

The purpose of signing and hashing is to give users a way to verify that the copy they receive
has not been maliciously tampered with. Users are about to run this code on their computer-
s — if the code has been tampered with, an attacker could suddenly have a back door to all
their data. (See also the section called “Security Releases” [229].) The details of creating
digital signatures and release hashes are beyond the scope of this book, but if you're not fa-
miliar with them, see https://www.apache.org/dev/release-signing.html, and you might also
want to do an Internet search for these phrases (simultaneously): "open source" "digital sig-
nature" "web of trust".

Gaining developer approval is not simply a matter of them inspecting the release for obvious
flaws. Ideally, the developers download the package, build and install it onto a clean system,
run the regression test suite (see the section called “Automated testing” [243]), and do
some manual testing. Assuming it passes these checks, as well as any other release checklist
criteria the project may have, each developer then digitally signs each container (the .tar.gz
file, .zip file, etc) using GnuPG (https://www.gnupg.org/) or some other program capable of
producing OpenPGP-compliant signatures.

In most projects, the developers just use their personal digital signatures, instead of a shared
project key, and as many developers as want to may sign (i.e., there is a minimum number,
but not a maximum). The more developers sign, the more testing the release undergoes, and
also the greater the likelihood that a security-conscious user can find a web-of-trust path
from herself to the release.

Once approved, the release (that is, all tarballs, zip files, and whatever other formats
are being distributed) should be placed into the project's download area, accompanied
by the digital signatures and hashes. There are various standards for doing this. One
way is to accompany each released package with a file giving the corresponding digi-
tal signatures, and another file giving the checksum. For example, if one of the released
packages is scanley-2.5.0.tar.gz, place in the same directory a file scan-
ley-2.5.0.tar.gz.asc containing the digital signature for that tarball, another file
scanley-2.5.0.tar.gz.md5 containing its MD5 checksum, perhaps another, scan-
ley-2.5.0.tar.gz.sha256, containing its SHA256 checksum, etc. A different way to
provide checking is to collect all the signatures for all the released packages into a single file,
scanley-2.5.0.sigs; the same may be done with the checksums.

It doesn't really matter which way you do it. Just keep to a simple scheme, describe it clearly,
and be consistent from release to release.

227

https://www.apache.org/dev/release-signing.html
https://www.gnupg.org/

Packaging, Releasing,
and Daily Development

Candidate Releases
For important releases containing many changes, many projects prefer to put out release can-
didates first, e.g., scanley-2.5.0-beta1 before scanley-2.5.0. The purpose of
a candidate is to subject the code to wide testing before blessing it as an official release. If
problems are found, they are fixed on the release branch and a new candidate release is rolled
out (scanley-2.5.0-beta2). The cycle continues until no unacceptable bugs are left,
at which point the last candidate release becomes the official release — that is, the only dif-
ference between the last candidate release and the real release is the removal of the qualifier
from the version number.

In most other respects, a candidate release should be treated the same as a real release. The
alpha, beta, or rc qualifier is enough to warn conservative users to wait until the real release,
and of course the announcements for the candidate releases should point out that their pur-
pose is to solicit feedback. Other than that, give candidate releases the same amount of care
as regular releases. After all, you want people to use the candidates, because exposure is the
best way to uncover bugs, and also because you never know which candidate release will end
up becoming the official release.

Announcing Releases
Announcing a release is like announcing any other event, and should use the procedures de-
scribed in the section called “Publicity” [195]. There are a few specific things to do for re-
leases, though.

Whenever you write the URL to the downloadable release tarball, make sure to also write the
MD5/SHA1 checksums and pointers to the digital signatures file. Since the announcement
happens in multiple forums (mailing list, news page, etc), this means users can get the check-
sums from multiple sources, which gives the most security-conscious among them extra as-
surance that the checksums themselves have not been tampered with. Meanwhile, giving the
link to the digital signature files multiple times doesn't make those signatures more secure,
but it does reassure people (especially those who don't follow the project closely) that the
project takes security seriously.

In the announcement email, and on news pages that contain more than just a blurb about the
release, make sure to include the relevant portion of the CHANGES file, so people can see
why it might be in their interests to upgrade. This is as important with candidate releases as
with final releases; the presence of bugfixes and new features is important in tempting people
to try out a candidate release.

Finally, don't forget to thank the development team, the testers, and all the people who took
the time to file good bug reports. Don't single out anyone by name, though, unless there's

228

Packaging, Releasing,
and Daily Development

someone who is individually responsible for a huge piece of work, the value of which is
widely recognized by everyone in the project. Be wary of sliding down the slippery slope of
credit inflation (see the section called “Credit” [264]).

Maintaining Multiple Release Lines
Most mature projects maintain multiple release lines in parallel. For example, after 1.0.0
comes out, that line should continue with micro (bugfix) releases 1.0.1, 1.0.2, etc, until the
project explicitly decides to end the line, and releasing 1.1.0 is not sufficient reason to end
the 1.0.x line. For example, some users make it a policy never to upgrade to the first release
in a new minor or major series — they let others shake the bugs out of, say 1.1.0, and wait
until 1.1.1. This isn't necessarily selfish (remember, they're forgoing the bugfixes and new
features too); it's just that, for whatever reason, they've decided to be very careful with up-
grades. Accordingly, if the project learns of a major bug in 1.0.3 right before it's about to re-
lease 1.1.0, it would be a bit severe to just put the bugfix in 1.1.0 and tell all the old 1.0.x
users they should upgrade. Why not release both 1.1.0 and 1.0.4, so everyone can be happy?

After the 1.1.x line is well under way, you can declare 1.0.x to be at end of life. This should
be announced officially. The announcement could stand alone, or it could be mentioned as
part of a 1.1.x release announcement; however you do it, users need to know that the old line
is being phased out, so they can make upgrade decisions accordingly.

Some projects set a window of time during which they pledge to support the previous release
line. In an open source context, "support" means accepting bug reports against that line, and
making maintenance releases when significant bugs are found. Other projects don't give a
definite amount of time, but watch incoming bug reports to gauge how many people are still
using the older line. When the percentage drops below a certain point, they declare end of
life for the line and stop supporting it.

For each release, make sure to have a target version or target milestone available in the bug
tracker, so people filing bugs will be able to do so against the proper release. Don't forget to
also have a target called "development" or "latest" for the most recent development sources,
since some people — and not only active developers — stay ahead of the official releases.

Security Releases
Most of the details of handling security bugs were covered in the section called “Announcing
Security Vulnerabilities” [197], but there are some special details to discuss for doing securi-
ty releases.

A security release is a release made solely to close a security vulnerability. The code that fix-
es the bug cannot be made public until the release is available, which means not only that

229

Packaging, Releasing,
and Daily Development

the fixes cannot be committed to any public repository until the day of the release, but also
that the release cannot be publicly tested before it goes out the door. Obviously, the develop-
ers can examine the fix among themselves, and test the release privately, but widespread re-
al-world testing is not possible.

Because of this lack of testing, a security release should always consist of some existing re-
lease plus the fixes for the security bug, with no other changes. This is because the more
changes you ship without testing, the more likely that one of them will cause a new bug, per-
haps even a new security bug! This conservatism is also friendly to administrators who may
need to deploy the security fix, but whose upgrade policy stipulates that they not deploy any
other changes at the same time.

Making a security release sometimes involves some minor deception. For example, the
project may have been working on a 1.1.3 release, with certain bug fixes to 1.1.2 already
publicly declared, when a security report comes in. Naturally, the developers cannot talk
about the security problem until they make the fix available; until then, they must continue to
talk publicly as though 1.1.3 will be what it's always been planned to be. But when 1.1.3 ac-
tually comes out, it will differ from 1.1.2 only in the security fixes, and all those other fixes
will have been deferred to 1.1.4 (which, of course, will now also contain the security fix, as
will all other future releases).

You could add an extra component to an existing release to indicate that it contains security
changes only. For example, people would be able to tell just from the numbers that 1.1.2.1
is a security release against 1.1.2, and they would know that any release "higher" than that
(e.g., 1.1.3, 1.2.0, etc) contains the same security fixes. For those in the know, this system
conveys a lot of information. On the other hand, for those not following the project closely, it
can be a bit confusing to see a three-component release number most of the time with an oc-
casional four-component one thrown in seemingly at random. Most projects choose consis-
tency and simply use the next regularly scheduled number for security releases, even when it
means shifting other planned releases by one number.

Releases and Daily Development
Maintaining parallel releases simultaneously has implications for how daily development
is done. In particular, it makes a discipline that would be recommended anyway practically
mandatory: have each commit be a single logical change, and don't mix unrelated changes in
the same commit. If a change is too big or too disruptive to do in one commit, break it across
N commits, where each commit is a well-partitioned subset of the overall change, and in-
cludes nothing unrelated to the overall change.

Here's an example of an ill-thought-out commit:

230

Packaging, Releasing,
and Daily Development

commit 3b1917a01f8c50e25db0b71edce32357d2645759
Author: J. Random <jrandom@example.com>
Date: Sat 2022-06-28 15:53:07 -0500

Fix Issue #1729: warn on change during re-indexing.

Make indexing gracefully warn the user when a file is
changing as it is being indexed.

* ui/repl.py
 (ChangingFile): New exception class.
 (DoIndex): Handle new exception.

* indexer/index.py
 (FollowStream): Raise new exception if file changes during
 indexing.
 (BuildDir): Unrelatedly, remove some obsolete comments,
 reformat some code, and fix the error check when creating
 a directory.

Other unrelated cleanups:

* www/index.html: Fix some typos, set next release date.

The problem with it becomes apparent as soon as someone needs to port the BuildDir er-
ror check fix over to a branch for an upcoming maintenance release. The porter doesn't want
any of the other changes — for example, perhaps the fix for ticket #1729 wasn't approved for
the maintenance branch at all, while the index.html tweaks would simply be irrelevant
there. But she cannot easily grab just the BuildDir change via the version control tool's
merge functionality, because the version control system was told that that change is logical-
ly grouped with all these other unrelated things. In fact, the problem would become apparent
even before the merge. Merely listing the change for voting would become problematic: in-
stead of just giving the revision number, the proposer would have to make a special change
branch just to isolate the portion of the commit being proposed. That would be a lot of work
for others to suffer through, and all because the original committer couldn't be bothered to
break things into logical groups.

The original commit really should have been four separate commits: one to fix issue #1729,
another to remove obsolete comments and reformat code in BuildDir, another to fix the
error check in BuildDir, and finally, one to tweak index.html. The third of those com-
mits would be the one proposed for the maintenance release branch.

231

Packaging, Releasing,
and Daily Development

Of course, release stabilization is not the only reason why having each commit be one logi-
cal change is desirable. Psychologically, a semantically unified commit is easier to review,
and easier to revert if necessary (in some version control systems, reversion is really a spe-
cial kind of merge anyway). A little up-front discipline on each developer's part can save the
project a lot of headache later.

Planning Releases

One area where open source projects have historically differed from proprietary projects is in
release planning. Proprietary projects usually have firmer deadlines. Sometimes it's because
customers were promised that an upgrade would be available by a certain date, because the
new release needs to be coordinated with some other effort for marketing purposes, or be-
cause the venture capitalists who invested in the whole thing need to see some results before
they put in any more funding. Free software projects, on the other hand, are concerned with
maintaining a cooperative working atmosphere among many parties — some of who may be
business competitors with others — and the preservation of the working relationship is more
important than any single party's deadlines.

Of course, many open source projects are funded by corporations, and are correspondingly
influenced by deadline-conscious management. This is in many ways a good thing, but it can
cause conflicts between the priorities of those developers who care about a particular release
date and everyone else. The developers who are under pressure will naturally want to just
pick a date when the release will occur and have everyone's activities fall into line. But the
rest of the developers may have other agendas — perhaps features they want to complete, or
some testing they want to have done — that they feel the release should wait for.

There is no general solution to this problem except discussion and compromise, of course.
But you can minimize the friction by decoupling the proposed existence of a given release
from the date when it would go out the door. That is, try to steer discussion toward the sub-
ject of which releases the project will be making in the near- to medium-term future, and
what features will be in them, without at first mentioning anything about dates (except for
rough guesses with wide margins of error).12 By nailing down feature sets early, you reduce
the complexity of the discussion about any individual release, and thus improve predictabili-
ty. This then creates a kind of inertial bias against anyone who proposes to expand the defin-
ition of a release by adding new features or other complications. If the release's contents are
fairly well defined, the onus is on the proposer to justify the expansion, even though the date
of the release may not have been set yet. Once the release's contents have been defined, dis-
cussion about dates will be much easier.

12Or you could consider doing time-based releases, as described in Time-Based Releases vs Feature-Based Releas-
es [216].

232

Packaging, Releasing,
and Daily Development

An alternative strategy for dealing with the tension between project release timing and corpo-
rate needs is for the company to simply make separate interim releases for its customers. As
discussed in the section called “The Economics of Open Source” [116], such releases can be
public and open source, and won't do the project any harm as long as they are clearly distin-
guished from the project's official releases. However, maintaining separate release lines in-
dependently from the project involves overhead in tracking changes and porting them back
and forth. This technique only works when a company can dedicate enough people to release
management to handle that overhead.

It is crucial, of course, to never present any individual suggestion or decision as written in
stone. In the comments associated with each assignment of a ticket to a specific future re-
lease, invite discussion, dissent, and be genuinely willing to be persuaded whenever possi-
ble. Never exercise control merely for the sake of exercising control: the more deeply others
feel they can participate in the release planning process (see the section called “Share Man-
agement Tasks as Well as Technical Tasks” [249]), the easier it will be to persuade them
to share your priorities on the issues that really matter for you.

The other way the project can lower tensions around release planning is to make releases
fairly often (even if you're not using a time-based release scheme — see Time-Based Releas-
es vs Feature-Based Releases [216]). When there's a long time between releases, the im-
portance of any individual release is magnified in everyone's minds; people are that much
more crushed when their code doesn't make it in, because they know how long it might be
until the next chance. Depending on the complexity of the release process and the nature of
your project, somewhere between every three and six months is usually about the right gap
between releases, though maintenance lines may put out micro releases a bit faster, if there is
demand for them.

233

Chapter 8. Managing
Participants

Getting people to agree on what a project needs, and to work together to achieve it, requires
more than just a genial atmosphere and a lack of obvious dysfunction. It requires someone,
or several someones, consciously managing all the people involved. Managing participants
who work for different organizations or for themselves may not be a technical craft in the
same sense as computer programming, but it is a craft in the sense that it can be improved
through study and practice.

This chapter is a grab-bag of specific techniques for managing diverse participants in an
open source project. It draws, perhaps more heavily than previous chapters, on the Subver-
sion project as a case study, partly because I was working on that project as I wrote the first
edition of this book and had all the primary sources close at hand, and partly because it's
more acceptable to cast critical stones into one's own glass house than into others'. But I have
also seen in various other projects the benefits of applying — and the consequences of not
applying — the recommendations that follow; when it is politically feasible to give examples
from some of those other projects, I will do so.

Speaking of politics, this is as good a time as any to drag that much-maligned word out for
a closer look. Many engineers like to think of politics as something other people engage in.
"I'm just advocating the best course for the project, but she's raising objections for political
reasons." I believe this distaste for politics (or for what is imagined to be politics) is espe-
cially strong in engineers because engineers are bought into the idea that some solutions are
objectively superior to others. Thus, when someone acts in a way that seems motivated by
non-technical considerations — say, the maintenance of her own position of influence, the
lessening of someone else's influence, outright horse-trading, or avoiding hurting someone's
feelings — other participants in the project may get annoyed. Of course, this rarely prevents
them from behaving in the same way when their own vital interests are at stake.

If you consider "politics" a dirty word and hope to keep your project free of it, give up right
now. Politics are inevitable whenever people have to cooperatively manage a shared re-
source. In the case of an open source project, even though the code itself is not that kind of
shared resource (since it can be copied by anyone), attention, credibility, and influence in the
project very much are: they are by definition not copyable, and therefore not forkable.

Thus it is quite reasonable that one of the considerations in each person's decision-making
process is the question of how a given action might affect her own future influence in the
project. After all, if you trust your own judgement and skills, as most programmers do, then
the potential loss of future influence has to be considered a technical result, in a sense. Sim-

234

Managing Participants

ilar reasoning applies to other behaviors that might seem, on their face, like "pure" politics.
In truth, there is no such thing as pure politics: it is precisely because actions have multiple
real-world consequences that people become politically conscious in the first place. Politics
is, in the end, simply an acknowledgement that all consequences of decisions must be taken
into account. If a particular decision leads to a result that most participants find technically
satisfying, but involves a change in power relationships that leaves key people feeling isolat-
ed, the latter is just as important a result as the former. To ignore it would not be high-mind-
ed but shortsighted.

So as you read the advice that follows, and as you work with your own project, remember
that there is no one who is above politics. Appearing to be above politics is merely one par-
ticular political strategy, and sometimes a very useful one, but it is never the reality. Politics
is simply what happens when people disagree on the use or allocation of a shared asset, and
successful projects evolve political mechanisms for managing such disagreement construc-
tively.

Community and Motivation
Why do people work on free software projects?1 Of course, in some cases the answer is that
it's their job — their manager asked them to. But even then, most participants have some de-
gree of intrinsic motivation that goes beyond a mere management request. As every manager
knows, people are much more successful when they have their own motivations for wanting
to succeed than when they are merely performing work in return for a paycheck. Most open
source developers — I would even go so far as to say the vast majority of them — are not in
it only for the paycheck. There is something more to it than that.

When asked, many claim they do it because they want to produce good software, or want to
be personally involved in fixing the bugs that matter to them. But these reasons are usual-
ly not the whole story. After all, could you imagine a participant staying with a project even
if no one ever said a word in appreciation of her work, or listened to her in discussions? Of
course not. Clearly, people spend time on free software for reasons beyond just an abstract
desire to produce good code. Understanding people's true motivations will help you arrange
things so as to attract and keep them. The desire to produce good software may be among
those motivations, along with the challenge and educational value of working on hard prob-
lems. But humans also have a built-in desire to work with other humans, and to give and earn
respect through cooperative activities. Groups engaged in cooperative activities must evolve
norms of behavior such that status is acquired and kept through actions that help the group's
goals.

1This question was studied in detail, with interesting results, in a paper by Karim Lakhani and Robert G. Wolf, entitled
Why Hackers Do What They Do: Understanding Motivation and Effort in Free/Open Source Software Projects. See
http://flosshub.org/node/53.

235

http://flosshub.org/node/53

Managing Participants

Those norms won't always arise by themselves. For example, on some projects — experi-
enced open source developers can probably name several off the tops of their heads — peo-
ple apparently feel that status is acquired by posting frequently and verbosely. They don't
come to this conclusion accidentally; they come to it because they are rewarded with respect
for making long, intricate arguments, whether or not that actually helps the project. Follow-
ing are some techniques for creating an atmosphere in which status-acquiring actions are also
constructive actions.

Delegation
Delegation is not merely a way to spread the workload around; it is also a political and so-
cial tool. Consider all the effects when you ask someone to do something. The most obvi-
ous effect is that, if he accepts, he does the task and you don't. But another effect is that he
is made aware that you trusted him to handle the task. Furthermore, if you made the request
in a public forum, then he knows that others in the group have been made aware of that trust
too. He may also feel some pressure to accept, which means you must ask in a way that al-
lows him to decline gracefully if he doesn't really want the job. If the task requires coordina-
tion with others in the project, you are effectively proposing that he become more involved,
form bonds that he might not otherwise have been formed, and perhaps become a source of
authority in some subdomain of the project. The added involvement may be daunting, or it
may lead him to become engaged in new ways from an increased feeling of overall commit-
ment.

Because of all these effects, it often makes sense to ask someone else to do something even
when you know you could do it faster or better yourself. Of course, there is sometimes a
strict economic efficiency argument for this anyway: perhaps the opportunity cost of doing
it yourself would be too high — there might be something even more important you could
do with that time. But even when that kind of comparative advantage argument doesn't ap-
ply, you may still want to ask someone else to take on the task, because in the long run you
want to draw that person deeper into the project, even if it means spending extra time watch-
ing over them at first. The converse technique also applies: if you occasionally volunteer for
work that someone else doesn't want or have time to do, you will gain her good will and re-
spect. Delegation and substitution are not just about getting individual tasks done; they're al-
so about drawing people into a closer commitment with each other and to the project.

Distinguish Clearly Between Inquiry and Assignment

Sometimes it is fair to expect that a person will accept a particular task. For example, if
someone writes a bug into the code, or commits code that fails to comply with project guide-
lines in some obvious way, then it is enough to point out the problem and thereafter be-
have as though you assume the person will take care of it. Also, if they have stated publicly
that they will do something, it is reasonable to depend on that. But there are other situations

236

Managing Participants

where it is by no means clear that you have a right to expect action. The person may do as
you ask, or may not. Since no one likes to be taken for granted, you need to be sensitive to
the difference between these two types of situations, and tailor your requests accordingly.

One thing that almost always causes people instant annoyance is being asked to do some-
thing in a way that implies that you think it is clearly their responsibility to do it when they
feel otherwise. For example, assignment of incoming tickets is particularly fertile ground for
this kind of annoyance. The participants in a project usually know who is expert in what ar-
eas, so when a bug report comes in, there will often be one or two people whom everyone
knows could probably fix it quickly. However, if you assign the ticket over to one of those
people without her prior permission, she may feel she has been put into an uncomfortable po-
sition. She senses the pressure of expectation, but also may feel that she is, in effect, being
punished for her expertise. After all, the way to acquire expertise is by fixing bugs, so per-
haps someone else should take this one! (Note that ticket trackers that automatically assign
tickets to particular people based on information in the bug report are less likely to offend,
because everyone knows that the assignment was made by an automated process, and is not
an indication of human expectations.)

While it would be nice to spread the load as evenly as possible, there are certain times when
you just want to encourage the person who can fix a bug the fastest to do so. Given that you
can't afford a communications turnaround for every such assignment ("Would you be willing
to look at this bug?" "Yes." "Okay, I'm assigning the ticket over to you then." "Okay."), you
should simply make the assignment in the form of an inquiry, conveying no pressure. Virtu-
ally all ticket trackers allow a comment to be associated with the assignment of a ticket. In
that comment, you can say something like this:

Assigning this over to you, jrandom, because you're most familiar with
this code. Feel free to bounce this back if you don't have time to look at it,
though. (And let me know if you'd prefer not to receive such requests in
the future.)

This distinguishes clearly between the request for assignment and the recipient's acceptance
of that assignment. The audience here isn't only the assignee, it's everyone: the entire group
sees a public confirmation of the assignee's expertise, but the message also makes it clear
that the assignee is free to accept or decline the responsibility.

Follow Up After You Delegate

When you ask someone to do something, remember that you have done so, and follow up
with her no matter what. Most requests are made in public forums, and are roughly of the
form "Can you take care of X? Let us know either way; no problem if you can't, I just need
to know." You may or may not get a response. If you do, and the response is negative, the

237

Managing Participants

loop is closed — you'll need to try some other strategy for dealing with X. If there is a pos-
itive response, then keep an eye out for progress on the issue, and comment on the progress
you do or don't see (everyone works better when they know someone else is appreciating
their work). If there is no response after a few days, ask again, or post saying that you got no
response and are looking for someone else to do it. Or just do it yourself, but still make sure
to say that you got no response to the initial inquiry.

The purpose of publicly noting the lack of response is not to humiliate the person, and your
remarks should be phrased so as not to have that effect. The purpose is simply to show that
you keep track of what you have asked for, and that you notice the reactions you get. This
makes people more likely to say yes next time, because they will observe (even if only un-
consciously) that you are likely to notice any work they do, given that you noticed the much
less visible event of someone failing to respond.

Notice What People Are Interested In

Another thing that makes people happy is to have their interests noticed — in general, the
more aspects of someone's personality you notice and remember, the more comfortable she
will be, and the more she will want to work with groups of which you are a part.

For example, there was a sharp distinction in the Subversion project between people who
wanted to reach a definitive 1.0 release (which we eventually did), and people who main-
ly wanted to add new features and work on interesting problems but who didn't much care
when 1.0 came out. Neither of these positions is better or worse than the other; they're just
two different kinds of developers, and both kinds do lots of work on the project. But we
swiftly learned that it was important to not assume that the excitement of the 1.0 drive was
shared by everyone. Electronic media can be very deceptive: you may sense an atmosphere
of shared purpose when, in fact, it's shared only by the people you happen to have been talk-
ing to, while others have completely different priorities.

The more aware you are of what different people want out of the project, the more effective-
ly you can make requests of them. Even just demonstrating an understanding of what they
want, without making any associated request, is useful, in that it confirms to each person that
she's not just another particle in an undifferentiated mass.

Praise and Criticism
Praise and criticism are not opposites; in many ways, they are very similar. Both are primar-
ily forms of attention, and are most effective when specific rather than generic. Both should
be deployed with concrete goals in mind. Both can be diluted by inflation: praise too much or
too often and you will devalue your praise; the same is true for criticism, though in practice,
criticism is usually reactive and therefore a bit more resistant to devaluation.

238

Managing Participants

An important feature of technical culture is that detailed, dispassionate criticism is often tak-
en as a kind of praise (as discussed in the section called “Recognizing Rudeness” [170]),
because of the implication that the recipient's work is worth the time required to analyze it.
However, both of those conditions — detailed and dispassionate — must be met for this to
be true. For example, if someone makes an incorrect change to the code, it is useless (and
actually harmful) to follow up saying simply "That was sloppy." Sloppiness is ultimately a
characteristic of a person, not of their work, and it's important to keep your reactions focused
on the work. It's much more effective to describe whatever is wrong with the change, tactful-
ly and without malice. If this is the third or fourth careless change in a row by the same per-
son, it's appropriate to say that — again without anger — at the end of your critique, to make
it clear that the pattern has been noticed.

If someone does not improve in response to criticism, the solution is not more or stronger
criticism. The solution is for the group to remove that person from the position of incom-
petence, in a way that minimizes hurt feelings as much as possible; see the section called
“Transitions” [256] for examples. That is a rare occurrence, however. Most people re-
spond pretty well to criticism that is specific, detailed, and contains a clear (even if unspo-
ken) expectation of improvement.

Praise won't hurt anyone's feelings, of course, but that doesn't mean it should be used any
less carefully than criticism. Praise is a tool: before you use it, ask yourself why you want
to use it. As a rule, it's not a good idea to regularly praise people for doing what they usual-
ly do, or for actions that are a normal and expected part of participating in the group. If you
were to do that, it would be hard to know when to stop: should you praise everyone for doing
the usual things? After all, if you leave some people out, they'll wonder why. It's much better
to express praise and gratitude sparingly, in response to unusual or unexpected efforts, with
the intention of encouraging more such efforts. When a participant seems to have moved per-
manently into a state of higher productivity, adjust your praise threshold for that person ac-
cordingly. Repeated praise for normal behavior gradually becomes meaningless anyway. In-
stead, that person should sense that her high level of productivity is now considered normal
and natural, and only work that goes beyond that should be specially noticed.

This is not to say that the person's contributions shouldn't be acknowledged, of course. But
remember that if the project is set up right, everything that person does is already visible any-
way, and so the group will know (and the person will know that the rest of the group knows)
everything she does. There are also ways to acknowledge someone's work by means other
than direct praise. You could mention in passing, while discussing a related topic, that she
has done a lot of work in the given area and is the resident expert there; you could publicly
consult her on some question about the code; or perhaps most effectively, you could conspic-
uously make further use of the work she has done, so she sees that others are now comfort-
able relying on the results of her work. It's probably not necessary to do these things in any
calculated way. Someone who regularly makes large contributions in a project will know it,
and will occupy a position of influence by default. There's usually no need to take explicit

239

Managing Participants

steps to ensure this, unless you sense that, for whatever reason, a contributor is underappreci-
ated.

Prevent Territoriality

Watch out for participants who try to stake out exclusive ownership of certain areas of the
project, and who seem to want to do all the work in those areas, to the extent of aggressively
taking over work that others start. Such behavior may even seem healthy at first. After all, on
the surface it looks like the person is taking on more responsibility, and showing increased
activity within a given area. But in the long run, it is destructive. When people sense a "no
trespassing" sign, they stay away. This results in reduced review in that area, and greater
fragility, because the lone developer becomes a single point of failure. Worse, it fractures the
cooperative, egalitarian spirit of the project. The theory should always be that any develop-
er is welcome to help out on any task at any time. Of course, in practice things work a bit dif-
ferently: people do have areas where they are more and less influential, and non-experts fre-
quently defer to experts in certain domains of the project. But the key is that this is all volun-
tary: informal authority is granted based on competence and proven judgement, but it should
never be actively taken. Even if the person desiring the authority really is competent, it is
still crucial that she hold that authority informally, through the consensus of the group, that
the exact boundaries of the authority remain fuzzy and subjective, and that the authority nev-
er cause her to exclude others from working in that area.

Rejecting or editing someone's work for technical reasons is an entirely different matter, of
course. There, the decisive factor is the content of the work, not who happened to act as gate-
keeper. It may be that the same person happens to do most of the reviewing for a given area,
but as long as he never tries to prevent someone else from doing that work too, things are
probably okay.

Cookie Licking

The wonderful term cookie licking, which I first heard from Sumana Harihareswara,
can be used for the situation where someone claims, in front of the group, that they're
going to take care of a certain task but then does nothing with it. As Sumana says2:
"Nobody in their right mind would pick up and eat the licked cookie or finish the
[task]." If you think you see an instance of cookie licking happening in your project,
simply pointing it out may be enough to de-territorialize the task in question and make
others consider picking it up (may be enough to sterilize the cookie, I guess, though at
this point staying with the analogy may be more confusing than helpful).

2See http://opensourcebridge.org/sessions/1132.

240

http://opensourcebridge.org/sessions/1132

Managing Participants

In order to combat incipient territorialism, or even the appearance of it, many projects have
taken the step of banning the inclusion of author names or designated maintainer names in
source files. I wholeheartedly agree with this practice: we follow it in the Subversion project,
and it is more or less official policy at the Apache Software Foundation. ASF member San-
der Striker puts it this way:

At the Apache Software foundation we discourage the use of author tags
in source code. There are various reasons for this, apart from the legal
ramifications. Collaborative development is about working on projects as
a group and caring for the project as a group. Giving credit is good, and
should be done, but in a way that does not allow for false attribution, even
by implication. There is no clear line for when to add or remove an au-
thor tag. Do you add your name when you change a comment? When you
put in a one-line fix? Do you remove other author tags when you refactor
the code and it looks 95% different? What do you do about people who go
about touching every file, changing just enough to make the virtual author
tag quota, so that their name will be everywhere?

There are better ways to give credit, and our preference is to use those.
From a technical standpoint author tags are unnecessary; if you wish to
find out who wrote a particular piece of code, the version control system
can be consulted to figure that out. Author tags also tend to get out of date.
Do you really wish to be contacted in private about a piece of code you
wrote five years ago and were glad to have forgotten?

A software project's source code files are the core of its identity. They should reflect the fact
that the developer community as a whole is responsible for them, and not be divided up into
little fiefdoms.

People sometimes argue in favor of author or maintainer tags in source files on the grounds
that this gives visible credit to those who have done the most work there. There are two prob-
lems with this argument. First, the tags inevitably raise the awkward question of how much
work one must do to get one's own name listed there too. Second, they conflate the issue of
credit with that of authority: having done work in the past does not imply ownership of the
area where the work was done, but it's difficult if not impossible to avoid such an implica-
tion when individual names are listed at the tops of source files. In any case, credit informa-
tion can already be obtained from the version control logs and other out-of-band mechanisms
like mailing list archives, so no information is lost by banning it from the source files them-
selves.3

3But see the mailing list thread entitled "having authors names in .py files" at https://groups.google.com/group/sage-de-
vel/browse_thread/thread/e207ce2206f0beee for a good counterargument, particularly the post from William Stein. The
key in that case, I think, is that many of the authors come from a culture (the academic mathematics community) where

241

https://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee
https://groups.google.com/group/sage-devel/browse_thread/thread/e207ce2206f0beee

Managing Participants

If your project decides to ban individual names from source files, make sure not to go over-
board. For instance, many projects have a contrib/ area where small tools and helper
scripts are kept, often written by people who are otherwise not associated with the project.
It's fine for those files to contain author names, because they are not really maintained by the
project as a whole. On the other hand, if a contributed tool starts getting hacked on by other
people in the project, eventually you may want to move it to a less isolated location and, as-
suming the original author approves, remove the author's name, so that the code looks like
any other community-maintained resource. If the author is sensitive about this, compromise
solutions are acceptable, for example:

indexclean.py: Remove old data from a Scanley index.
#
Original Author: K. Maru <kobayashi@example.com>
Now Maintained By: Scanley Project (scanley.org)
and K. Maru.

...

But it's better to avoid such compromises, if possible, and most authors are willing to be per-
suaded, because they're happy that their contribution is being made a more integral part of
the project.

The important thing is to remember that there is a continuum between the core and the pe-
riphery of any project. The main source code files for the software are clearly part of the
core, and should be considered as maintained by the community. On the other hand, compan-
ion tools or pieces of documentation may be the work of single individuals, who maintain
them essentially alone, even though the works may be associated with, and even distributed
with, the project. There is no need to apply a one-size-fits-all rule to every file, as long as the
principle that community-maintained resources are not allowed to become individual territo-
ries is upheld.

The Automation Ratio

Try not to let humans do what machines could do instead. As a rule of thumb, automating a
common task is worth at least ten times the effort a developer would spend doing that task
manually one time. For very frequent or very complex tasks, that ratio could easily go up to
twenty or even higher.

crediting directly at the source is the norm and is highly valued. In such circumstances, it may be preferable to put author
names into the source files, along with precise descriptions of what each author did, since the majority of potential con-
tributors will expect that style of acknowledgement.

242

Managing Participants

Thinking of yourself as a "project manager", rather than just another developer, may be a
useful attitude here. Sometimes individual developers are too wrapped up in low-level work
to see the big picture and realize that everyone is wasting a lot of effort performing automat-
able tasks manually. Even those who do realize it may not take the time to solve the prob-
lem: because each individual performance of the task does not feel like a huge burden, no
one ever gets annoyed enough to do anything about it. What makes automation compelling is
that the small burden is multiplied by the number of times each developer incurs it, and then
that number is multiplied by the number of developers.

Here, I am using the term "automation" broadly, to mean not only repeated actions where
one or two variables change each time, but any sort of technical infrastructure that assists hu-
mans. The minimum standard automation required to run a project these days was described
in Chapter 3, Technical Infrastructure [51], but each project may have its own special prob-
lems too. For example, a group working on documentation might want to have a web site
displaying the most up-to-date versions of the documents at all times. Since documentation
is often written in a markup language like XML, there may be a compilation step, often quite
intricate, involved in creating displayable or downloadable documents. Arranging a web site
where such compilation happens automatically on every commit might take a little time, but
it is worth it.4 The overall benefits of having up-to-date pages available at all times are huge,
even though the cost of not having them might seem like only a small annoyance at any sin-
gle moment, to any single developer.

Taking such steps eliminates not merely wasted time, but the griping and frustration that en-
sue when humans make missteps (as they inevitably will) in trying to perform complicated
procedures manually. Multi-step, deterministic operations are exactly what computers were
invented for; save your humans for more interesting things.

(For another example of using automation to remove a bottleneck for the entire team,
see Subversion's Contribulyzer system, which I've already described in detail in Chap-
ter 21 of the book "Beautiful Teams" (https://www.oreilly.com/library/view/beauti-
ful-teams/9780596801885/). That chapter, Teams and Tools, is available online at https://red-
bean.com/kfogel/beautiful-teams/bt-chapter-21.html.)

Automated testing

Automated test runs are helpful for any software project, but especially so for open source
projects, because automated testing (especially regression testing) allows developers to feel
comfortable changing code in areas they are unfamiliar with, and thus encourages explorato-
ry development. Since detecting breakage is so hard to do by hand — one essentially has to

4It's gotten easier thanks to https://readthedocs.org/, an open source, community-supported site used by many projects.
In its own words, "Read The Docs simplifies software documentation by automating building, versioning, and hosting of
your docs for you."

243

https://www.oreilly.com/library/view/beautiful-teams/9780596801885/
https://www.oreilly.com/library/view/beautiful-teams/9780596801885/
https://red-bean.com/kfogel/beautiful-teams/bt-chapter-21.html
https://red-bean.com/kfogel/beautiful-teams/bt-chapter-21.html
https://readthedocs.org/

Managing Participants

guess where one might have broken something, and try various experiments to prove that one
didn't — having automated ways to detect such breakage saves the project a lot of time. It al-
so makes people much more relaxed about refactoring large swaths of code, and therefore
contributes to the software's long-term maintainability.

Regression Testing and Unit Testing

Regression testing means testing that working software stays working. Its purpose is
to reduce the chances that code changes will break the software, particularly in ways
the software has been broken before. Many projects have a regression test suite, a sep-
arate program that invokes the project's software with the expectation of particular in-
puts causing particular behaviors. If the test suite instead causes a different behavior to
happen, this is known as a regression, meaning that someone's change unexpectedly
broke something else.

Unit testing means testing the software's module boundaries using their documented
APIs. Its purpose is both to reduce the chance that modifications will break existing
functionality, and to prove that the intended functionality exists as claimed. If regres-
sion testing is retrospective ("What has broken in the past?"), unit testing is prospec-
tive ("What needs to continue working in the future?"). As with regression tests, many
projects have a unit test suite.

As a software project gets bigger and more complicated, the chances of unexpected
side effects increase steadily. Good design can reduce the rate at which those chances
increase, but it cannot eliminate the problem entirely. Thus many projects encourage,
and sometimes even require, contributors to accompany new functionality with corre-
sponding new regression or unit tests.

See https://en.wikipedia.org/wiki/Regression_testing and https://en.wikipedia.org/wi-
ki/Unit_testing for more information.

Automated testing is not a panacea. For one thing, it works best for programs with batch-
style interfaces. Software that is operated primarily through graphical user interfaces is much
harder to test programmatically. Another problem is that test suites themselves can often be
quite complex, with a learning curve and maintenance burden all their own. Reducing this
complexity is one of the most useful things you can do, even though it may take a consider-
able amount of time. The easier it is to add new tests to the suite, the more developers will do
so, and the fewer bugs will survive to release. Any effort spent making tests easier to write
will be paid back many-fold over the lifetime of the project.

Almost all projects have a "Don't break the build!" rule, meaning: don't commit a change
that makes the software unable to compile or run. Being the person who broke the build
is usually cause for mild embarrassment and ribbing. Projects with test suites often have a

244

https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Unit_testing

Managing Participants

corollary rule: don't commit any change that causes tests to fail. Such failures are easiest to
spot if there are automatic nightly or per-change runs of the entire test suite, with the results
posted publicly; that's another example of a worthwhile automation.

Most project hosting sites offer easy ways to connect code repositories to automating test
services, so that continuous integration5 can be a regular part of the development cycle. Un-
less you have a reason to do something different, your project should just use one of the stan-
dard CI systems that other projects on that hosting site use. That way some developers will
be already familiar with the CI setup when they start participating in your project.

In general, developers are willing to take the extra time to write tests when the test system is
comprehensible and easy to work with. Accompanying changes with tests is understood to
be the responsible thing to do, and it's also an easy opportunity for collaboration: often two
developers will divide up the work for a bugfix, with one writing the fix itself, and the other
writing the test. The latter developer sometimes ends up with more work, and since writing
a test is already less satisfying than actually fixing the bug, it is imperative that the test suite
not make the experience more painful than it has to be.

Some projects go even further, requiring that a new test accompany every bugfix or new fea-
ture. Whether this is a good idea or not depends on many factors: the nature of the software,
the makeup of the development team, and the difficulty of writing new tests. It is normal to
spend more time writing a new regression test than on fixing the original bug. But don't let
it get to an extreme: if it takes ten minutes to diagnose and fix a bug, but two hours to add a
corresponding test, most developers will not bother with the test. And if the project requires
tests to accompany fixes, then the developer may not bother to fix the bug in the first place.

If the test system ever becomes a significant impediment to development, something must be
done, and quickly. The same would be true for any routine process that turns into a barrier or
a bottleneck for contributors.

Treat Every User as a Potential Participant
Each interaction with a user is an opportunity to get a new participant. When a user takes the
time to post to one of the project's mailing lists, or to file a bug report, she has already tagged
herself as having more potential for involvement than most users (from whom the project
will never hear at all). Follow up on that potential: if she described a bug, thank her for the
report and ask her if she wants to try fixing it. If she wrote to say that an important question
was missing from the FAQ, or that the program's documentation was deficient in some way,
then freely acknowledge the problem (assuming it really exists) and ask if she's interested in
writing the missing material herself. Naturally, much of the time the user will demur. But it

5The Wikipedia page https://en.wikipedia.org/wiki/Continuous_integration has a good description of this practice and its
variants.

245

https://en.wikipedia.org/wiki/Continuous_integration

Managing Participants

doesn't cost much to ask, and every time you do, it reminds the other listeners in that forum
that getting involved in the project is something anyone can do.

Don't limit your goals to acquiring new developers and documentation writers. For example,
even training people to write good bug reports pays off in the long run, if you don't spend too
much time per person, and if they go on to submit more bug reports in the future — which
they are more likely to do if they got a constructive reaction to their first report. A construc-
tive reaction need not be a fix for the bug, although that's always the ideal; it can also be a
solicitation for more information, or even just a confirmation that the behavior is a bug. Peo-
ple want to be listened to. Secondarily, they want their bugs fixed. You may not always be
able to give them the latter in a timely fashion, but you (or rather, the project as a whole) can
give them the former.

A corollary of this is that developers should not express anger at people who file well-intend-
ed but vague bug reports. This is one of my personal pet peeves; I see developers do it all
the time on various open source mailing lists, and the harm it does is palpable. Some hapless
newbie will post a useless report:

Hi, I can't get Scanley to run. Every time I start it up, it just errors. Is any-
one else seeing this problem?

Some developer — who has seen this kind of report a thousand times, and hasn't stopped to
think that the newbie has not — will respond like this:

What are we supposed to do with so little information? Sheesh. Give us at
least some details, like the version of Scanley, your operating system, and
the error.

This developer has failed to see things from the user's point of view, and also failed to con-
sider the effect such a reaction might have on all the other people watching the exchange.
Naturally a user who may have no programming experience, and no prior experience report-
ing bugs, will not know how to write a bug report. What is the right way to handle such a
person? Educate them! And do it in such a way that they come back for more:

Sorry you're having trouble. We'll need more information in order to figure
out what's happening here. Please tell us the version of Scanley, your op-
erating system, and the exact text of the error. The very best thing you can
do is send a transcript showing the exact commands you ran, and the out-
put they produced. See http://www.scanley.org/how-to-report-a-bug.html
for more.

This way of responding is far more effective at extracting the needed information from the
user, because it is written to the user's point of view. First, it expresses sympathy: You had a
problem; we feel your pain. (This is not necessary in every bug report response; it depends

246

Managing Participants

on the severity of the problem and how upset the user seemed.) Second, instead of belittling
him for not knowing how to report a bug, it tells him how, and in enough detail to be actual-
ly useful — for example, many users don't realize that "show us the error" means "show us
the exact text of the error, with no omissions or abridgements." The first time you work with
such a user, you need to be specific about that. Finally, it offers a pointer to much more de-
tailed and complete instructions for reporting bugs. If you have successfully engaged with
the user, he will often take the time to read that document and do what it says. This means,
of course, that you have to have the document prepared in advance. It should give clear in-
structions about what kind of information your development team wants to see in every bug
report. Ideally, it should also evolve over time in response to the particular sorts of omissions
and misreports users tend to make for your project.

The Subversion project's bug reporting instructions, at https://subversion.apache.org/report-
ing-issues.html, are a fairly standard example of the form. Notice how they include an invi-
tation to provide a patch to fix the bug. This is not because such an invitation will lead to a
greater patch/report ratio — most users who are capable of fixing bugs already know that a
patch would be welcome, and don't need to be told. The invitation's real purpose is to empha-
size to all readers, especially those new to the project or new to free software in general, that
the project runs on participation. In a sense, the project's current developers are no more re-
sponsible for fixing the bug than is the person who reported it. This is an important point that
many new users will not be familiar with. Once they realize it, they're more likely to help
make the fix happen, if not by contributing code then by providing a more thorough repro-
duction recipe, or by offering to test fixes that other people post. The goal is to make every
user realize that there is no innate difference between himself and the people who work on
the project — that it's a question of how much time and effort one puts in, not a question of
who one is.

The admonition against responding angrily does not apply to rude users. Occasionally people
post bug reports or complaints that, regardless of their informational content, show a sneer-
ing contempt at the project for some failing. Often such people are alternately insulting and
flattering, such as the person who posted this to a Subversion mailing list:

Why is it that after almost 6 days there still aren't any binaries posted for
the windows platform?!? It's the same story every time and it's pretty frus-
trating. Why aren't these things automated so that they could be available
immediately?? When you post an "RC" build, I think the idea is that you
want users to test the build, but yet you don't provide any way of doing so.
Why even have a soak period if you provide no means of testing??

Initial response to this rather inflammatory post was surprisingly restrained: people pointed
out that the project had a published policy of not providing official binaries, and said, with
varying degrees of annoyance, that he ought to volunteer to produce them himself if they
were so important to him. Believe it or not, his next post started with these lines:

247

https://subversion.apache.org/reporting-issues.html
https://subversion.apache.org/reporting-issues.html

Managing Participants

First of all, let me say that I think Subversion is awesome and I really ap-
preciate the efforts of everyone involved. [...]

...and then he went on to berate the project again for not providing binaries, while still not
volunteering to do anything about it. After that, about 50 people just jumped all over him,
and I can't say I really minded. Retaliatory rudeness should be avoided toward people with
whom the project has (or would like to have) a sustained interaction. But when someone
makes it clear from the start that he is going to be a fountain of bile, there is no point making
him feel welcome.

Such situations are fortunately quite rare, and they are noticeably rarer in projects that make
an effort to engage users constructively and courteously from their very first interaction.

Meeting In Person: Conferences, Hackfests,
Code-a-Thons, Code Sprints, Retreats

In the section called “Sponsoring Conferences, Hackathons, and other Developer Meet-
ings” [142], I already discussed the usefulness of sponsoring in-person meetings between de-
velopers, including those who are not part of your organization but who work on the same
project(s) as your own developers do. Subsidizing in-person meetups, hackathons, and con-
ference travel creates good will and is a relatively cheap way to signal the permanence of
your company's strategic investment in a given project. It's also a good way for your organi-
zation to absorb outside ideas from the competitive and collaborative landscape, since it puts
your developers in close contact with developers from other companies.

Once you have decided to sponsor in-person contact, what form should it take?

The important thing to remember is that the primary output of a social event is social con-
nections. Don't sponsor a hackathon with just the limited goal of getting a specific list of
bugs fixed or features implemented. While it is reasonable to expect some technical progress
as the result of a hackathon, if that's all you get, you're wasting at least some of your money.
The real output is the increased trust and richer shared vocabulary built up between the de-
velopers from having been in the same room talking through the same problems — and from
having relaxed over a good meal later that evening. That closer relationship will continue to
pay off long after the event is over, in people's willingness to spend an extra hour reviewing
a commit, evaluating a design proposal, or helping someone debug an unexpected problem.
Deeper long-term collaboration is the goal; the event is just a means of getting there.

Meetups do not only have to be for writing code. Documentation sprints, user-testing and
QA sprints, and primarily user-centric events such as install fests are all useful. However,
be careful to distinguish clearly between purely developer-oriented events and events with

248

Managing Participants

a broader demographic, because the developers who attend will want to know what kind of
mindset to be in. Designing, coding, and debugging require a specific kind of concentration
and mental stance, and it helps developers a lot to know in advance whether the event they're
going is expected to have an atmosphere conducive to that kind of concentration or not. Both
kinds of events are useful for developers, and it's important for them to interact with and de-
velop relationships with documenters, testers, users, sales engineers, etc. They just need to
know what they're going to, so they can prepare accordingly.

Share Management Tasks as Well as
Technical Tasks

Share the management burden as well as the technical burden of running the project. As a
project becomes more complex, an increasing proportion of the work becomes about man-
aging people and information flow. There is no reason not to share that burden, and sharing
it does not necessarily require a top-down hierarchy either. In fact, what happens in practice
tends to be more of a peer-to-peer network topology than a military-style command structure.

Sometimes management roles are formalized and sometimes they happen spontaneously.
In the Subversion project, we have a patch manager, a translation manager, documentation
managers, issue managers (albeit unofficial), and a release manager. Some of these roles we
made a conscious decision to initiate, others just happened by themselves. Here we'll exam-
ine these roles, and a couple of others, in detail (except for release manager, which was al-
ready covered in the section called “Release Manager” [220] and the section called “Dicta-
torship by Release Owner” [217]).

"Manager" Does Not Mean "Owner"
As you read the role descriptions below, notice that none of them requires exclusive control
over the domain in question. The issue manager does not prevent other people from making
changes in the tickets database, the FAQ manager does not insist on being the only person to
edit the FAQ, and so on. These roles are all about responsibility without monopoly. An im-
portant part of each domain manager's job is to notice when other people are working in that
domain, and train them to do the things the way the manager does, so that the multiple ef-
forts reinforce rather than conflict. Domain managers should also document the processes by
which they do their work, so that when one leaves, someone else can pick up the slack right
away.

Sometimes there is a conflict: two or more people want the same role. There is no one right
way to handle this. You just have to draw on your knowledge of the project and of the people
involved and suggest a resolution. In some cases it will work to just put on your "benevolent

249

Managing Participants

dictator" hat and choose one of the people. But I find that a better technique is just to ask the
multiple candidates to settle it among themselves. They usually will, and will be more satis-
fied with the result than if a decision had been imposed on them from the outside. They may
even decide on a co-management arrangement, which is fine if it works, and if it doesn't then
you're right back where you started and can try a different resolution.

Patch Manager (or Pull Request Manager)

In a free software project that receives a lot of patches,6 keeping track of which patches have
arrived and what has been decided about them can be a nightmare, especially if done in a de-
centralized way. Most patches arrive either as posts to the project's development mailing list
or as a pull request submitted through the version control system, but there are a number of
different routes a patch can take after arrival.

Sometimes someone reviews the patch, finds problems, and bounces it back to the origi-
nal author for cleanup. This usually leads to an iterative process — all visible in a public fo-
rum — in which the original author posts revised versions of the patch until the reviewer has
nothing more to criticize. It is not always easy to tell when this process is done: if the review-
er commits the patch, then clearly the cycle is complete. But if she does not, it might be be-
cause she simply didn't have time, or doesn't have commit access herself and couldn't rope
any of the other developers into doing it.

Another frequent response to a patch is a freewheeling discussion, not necessarily about the
patch itself, but about whether the concept behind the patch is good. For example, the patch
may fix a bug, but the project prefers to fix that bug in another way, as part of solving a more
general class of problems. Often this is not known in advance, and it is the patch that stimu-
lates the discovery.

Occasionally, a posted patch is met with utter silence. Usually this is due to no developer
having time at that moment to review the patch, so each hopes that someone else will do it.
Since there's no particular limit to how long each person waits for someone else to pick up
the ball, and meanwhile other priorities are always coming up, it's very easy for a patch to
be ignored permanently without any single person intending for that to happen. The project
might miss out on a useful patch this way, and there are other harmful side effects as well: it
is discouraging to the author, who invested work in the patch, and it is discouraging to others
considering writing patches.

The patch manager's job is to make sure that patches don't "slip through the cracks." This
is done by following every patch through to some sort of stable state. The patch manager
watches every issue tracker discussion, pull request, or mailing list thread that results from

6Here "patch" and "pull request" are synonymous: they just mean a proposed change to the software, supplied in the
standard format for contributing changes.

250

Managing Participants

a patch posting. If it ends with a commit of the patch, he does nothing. If it goes into a re-
view/revise iteration, ending with a final version of the patch but no commit, he creates or
updates a ticket to point to the final version, and to any discussion around it, so that there is
a permanent record for developers to follow up on later. In projects that use a patch queue
management system7 or review tools,8 the patch manager can help encourage consistent us-
age of that tool by putting patches there and watching to make sure developers handle them
there.

When a patch gets no reaction at all, the patch manager waits a few days, then follows up
asking if anyone is going to review it. This usually gets a reaction: a developer may explain
that she doesn't think the patch should be applied, and give the reasons why, or she may re-
view it, in which case one of the previously described paths is taken. If there is still no re-
sponse, the patch manager may or may not file a ticket for the patch, at his discretion, but at
least the original submitter got some reaction. The true currency of open source projects is at-
tention: people who can see that they are getting attention will keep participating, even if not
every patch they submit lands.

Having a patch manager has saved the Subversion development team a lot of time and men-
tal energy. Without a designated person to take responsibility, every developer would con-
stantly have to worry "If I don't have time to respond to this patch right now, can I count on
someone else doing it? Should I try to keep an eye on it? But if other people are also keeping
an eye on it, for the same reasons, then we'd have needlessly duplicated effort." The patch
manager removes the second-guessing from the situation. Each developer can make the deci-
sion that is right for her at the moment she first sees the patch. If she wants to follow up with
a review, she can do that — the patch manager will adjust his behavior accordingly. If she
wants to ignore the patch completely, that's fine too; the patch manager will make sure it isn't
forgotten.

Because this system works only if people can depend on the patch manager being there with-
out fail, the role should be held formally. In Subversion, we advertised for it on the develop-
ment and users mailing lists, got several volunteers, and took the first one who replied. When
that person had to step down (see the section called “Transitions” [256]), we did the same
thing again. We've never tried having multiple people share the role, because of the commu-
nications overhead that would be required between them; but perhaps at very high volumes
of patch submission, a multiheaded patch manager might make sense.

7Three are TopGit (https://mackyle.github.io/topgit/), patchwork (http://jk.ozlabs.org/projects/patchwork/), and Quilt
(https://savannah.nongnu.org/projects/quilt/), as of early 2022. I'm sure there are others out there. Users of the Mercu-
rial version control system have long raved about the "Mercurial Queues" patch management system; because this is
integrated with Mercurial, it's not directly available for Git users. However, Stacked Git ("StGit", at https://stacked-
git.github.io/) provides similar functionality, and like Mercurial Queues is also based on Quilt.
8Project hosting sites usually have a built-in code review system, and most projects just use that. But you don't have to.
There are standalone code review systems worth checking out, such as Gerrit (https://www.gerritcodereview.com/) and
ReviewBoard (https://www.reviewboard.org/) (and there are others out there too).

251

https://mackyle.github.io/topgit/
http://jk.ozlabs.org/projects/patchwork/
https://savannah.nongnu.org/projects/quilt/
https://stacked-git.github.io/
https://stacked-git.github.io/
https://www.gerritcodereview.com/
https://www.reviewboard.org/

Managing Participants

Translation Manager

In software projects, "translation" can refer to two somewhat different things. It can mean
translating the software's documentation into other languages, or it can mean translating the
software itself — that is, having the program display errors and help messages in the user's
preferred language. Both are complex tasks, but once the right infrastructure is in place, they
are largely separable from other development. Because the tasks are similar in some ways,
it may make sense, depending on your project, to have a single translation manager han-
dle both, or it may be better to have two different managers. (Note also that specialized in-
frastructure is available to help make the translation process more efficient; see the section
called “Translation Infrastructure” [98] for more on this.)

In the Subversion project, we had one translation manager handle both. He did not actually
write the translations himself, of course — he might help out on one or two, but would need
to speak more than ten languages fluently in order to work on all of them! Instead, he man-
aged teams of other translators: he helped them coordinate among each other, and he coordi-
nated between the translation teams and the rest of the project.

Part of the reason the translation manager is necessary is that translators are a different de-
mographic from developers. They sometimes have little or no experience working in a ver-
sion control repository, or indeed with working as part of a distributed team at all. But in oth-
er respects they are often the best kind of participant: people with specific domain knowl-
edge who saw a need and chose to get involved. They are usually willing to learn, and en-
thusiastic to get to work. All they need is someone to tell them how. The translation manag-
er makes sure that the translations happen in a way that does not interfere unnecessarily with
regular development. He also serves as a sort of representative of the translators as a unified
body, whenever the developers must be informed of technical changes required to support
the translation effort.

Thus, the position's most important skills are diplomatic, not technical. For example, in Sub-
version we had a policy that all translations should have at least two people working on
them, because otherwise there is no way for the text to be reviewed. When a new person
shows up offering to translate Subversion to, say, Malagasy, the translation manager has to
either hook him up with someone who posted six months ago expressing interest in doing a
Malagasy translation, or else politely ask the person to go find another Malagasy translator
to work with as a partner. Once enough people are available, the manager sets them up with
the proper kind of commit access, informs them of the project's conventions (such as how
to write log messages), and then keeps an eye out to make sure they adhere to those conven-
tions.

Conversations between the translation manager and the developers, or between the transla-
tion manager and translation teams, are usually held in the project's original language — that

252

Managing Participants

is, the language from which all the translations are being made. For many free software
projects, this is English, but it doesn't matter what it is as long as the project agrees on it.
(English is probably best for projects that want to attract a broad international development
community, though.)

Conversations within a particular translation team usually happen in their shared language,
however, and one of the other tasks of the translation manager is to set up a dedicated mail-
ing list for each team. That way the translators can discuss their work freely, without dis-
tracting people on the project's main lists, most of whom would not be able to understand the
translation language.

Internationalization Versus Localization

Internationalization (I18N) and localization (L10N) both refer to the process of adapt-
ing a program to work in linguistic and cultural environments other than the one for
which it was originally written. The terms are often treated as interchangeable, but in
fact they are not quite the same thing. As https://en.wikipedia.org/wiki/International-
ization_and_localization writes:

The distinction between them is subtle but important: International-
ization is the adaptation of products for potential use virtually every-
where, while localization is the addition of special features for use in
a specific locale.

For example, changing your software to losslessly handle Unicode (https://
en.wikipedia.org/wiki/Unicode) text encodings is an internationalization move, since
it's not about a particular language, but rather about accepting text from any of a num-
ber of languages. On the other hand, making your software print all error messages in
Slovenian when it detects that it is running in a Slovenian environment is a localiza-
tion move.

The translation manager's task is principally about localization, not internationaliza-
tion.

Documentation Manager

Keeping software documentation up-to-date is a never-ending task. Every new feature or en-
hancement that goes into the code has the potential to cause a change in the documentation.
Also, once the project's documentation reaches a certain level of completeness, you will find
that a lot of the patches people send in are for the documentation, not for the code. This is be-
cause there are many more people competent to fix bugs in prose than in code: all users are
readers, but only a few are programmers.

253

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/Unicode

Managing Participants

Documentation patches are usually easier to review and apply than code patches. There is lit-
tle or no testing to be done, and the quality of the change can be evaluated quickly just by ex-
amination. Since the quantity is high, but the review burden fairly low, the ratio of adminis-
trative overhead to productive work is greater for documentation patches than for code patch-
es. Furthermore, most of the patches will probably need some sort of adjustment, in order to
maintain a consistent authorial voice in the documentation. In many cases, patches will over-
lap with or affect other patches, and need to be adjusted with respect to each other before be-
ing committed.

Given the exigencies of handling documentation patches, and the fact that the codebase
needs to be constantly monitored so the documentation can be kept up-to-date, it makes
sense to have one person, or a small team, dedicated to the task. They can keep a record of
exactly where and how the documentation lags behind the software, and they can have prac-
ticed procedures for handling large quantities of patches in an integrated way.

Documentation managers also serve another important purpose: they may be the only people
in the project who regularly review the documentation from top to bottom, and thus are in a
position to notice obsolete or redundant material, independently of any particular change.

Of course, none of this prevents other people in the project from applying documentation
patches on the fly, especially small ones, as time permits. And the same patch manager (see
the section called “Patch Manager (or Pull Request Manager)” [250]) can track both code
and documentation patches, filing them wherever the development and documentation teams
want them, respectively. (If the total quantity of patches ever exceeds one human's capacity
to track, though, switching to separate patch managers for code and documentation is prob-
ably a good first step.) The point of a documentation team is to ensure that there are peo-
ple who think of themselves as responsible for keeping the documentation organized, up-to-
date, and consistent with itself. In practice, this means knowing the documentation intimate-
ly, watching the codebase, watching the changes others commit to the documentation, watch-
ing for incoming documentation patches, and using all these information sources to do what-
ever is necessary to keep the documentation healthy. If the documentation is kept in a wiki,
then of course the wiki's "watch changes" feature can be very important to the documenta-
tion managers, since (depending on the wiki's edit policy) changes may land without going
through a pre-change review process.

Issue Manager

Bug report growth is proportional to user base growth, rather than to the number of actual de-
fects in the software. That is, the number of tickets in a project's bug tracker grows in propor-
tion — albeit usually non-linear proportion — to the number of people using the software.9

9 See http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/ for a more detailed discussion of this.

254

http://www.rants.org/2010/01/10/bugs-users-and-tech-debt/

Managing Participants

Therefore, even as you fix bugs and ship an increasingly robust, mature program, you should
still expect the number of open tickets to grow essentially without bound. The frequency of
duplicate tickets will thus also increase, as will the frequency of incomplete or poorly de-
scribed tickets.

An issue manager10 helps cope with this situation by watching what goes into the database,
and periodically sweeping through it looking for specific problems. Their most common ac-
tion is probably to fix up incoming tickets, either because the reporter didn't set some of the
form fields correctly, or because the ticket is a duplicate of one already in the database. Ob-
viously, the more familiar an issue manager is with the project's bug database, and with the
issue-tracking software's user interface and APIs, the more efficiently she will be able to de-
tect and handle duplicate tickets. This is why it is often good to have a few people specialize
in the bug database, instead of everyone trying to do it ad hoc. Although every developer in
the project needs a certain basic level of competence in manipulating the issue tracker, hav-
ing a few specialists becomes increasingly important as the project matures. When a project
tries to spread collective responsibility for the bug database across everyone, no single in-
dividual acquires a deep enough expertise in the content of the database or the tracker's fea-
tures.

Issue managers can help map between tickets and individual developers. When there are a
lot of bug reports coming in, not every developer may read the ticket notification mailing list
with equal attention. However, if someone who knows the development team is keeping an
eye on all incoming tickets, then she can discreetly direct certain developers' attention to spe-
cific bugs when appropriate. Of course, this has to be done with a sensitivity to everything
else going on in development, and to the recipient's desires and temperament. Therefore, it is
often best for issue managers to be developers themselves.

Depending on how your project uses the ticket tracker, issue managers can also shape the
database to reflect the project's priorities. For example, in Subversion we scheduled tickets
into specific future releases, so that when someone asks "When will bug X be fixed?" we
could say "Two releases from now," even if we can't give an exact date. The releases are rep-
resented in the ticket tracker as target milestones (something most ticket trackers support).
As a rule, every Subversion release has one major new feature and a list of specific bug fix-
es. We assigned the appropriate target milestone to all the tickets planned for that release (in-
cluding the new feature — it got a ticket too), so that people could view the bug database
through the lens of release scheduling. These targets rarely remain static, however. As new
bugs come in, priorities sometimes get shifted around, and tickets must be moved from one
milestone to another so that each release remains manageable. This, again, is best done by
people who have an overall sense of what's in the database, and how various tickets relate to
each other.

10In the nomenclature I've been using elsewhere in this book, this position might be called "ticket manager", but in prac-
tice no project calls it that, and most call it "issue manager", so that's what we'll use here too.

255

Managing Participants

Another thing issue managers do is notice when tickets become obsolete. Sometimes a bug
is fixed accidentally as part of an unrelated change to the software, or sometimes the project
changes its mind about whether a certain behavior is buggy. Finding obsoleted tickets is not
easy: the only way to do it systematically is by making a sweep over all the tickets in the
database. But full sweeps become less and less feasible over time, as the number of tickets
grows. After a certain point, the only way to keep the database sane is to use a divide-and-
conquer approach: categorize tickets immediately on arrival and direct them to the appropri-
ate developer's or team's attention. The recipient then takes charge of the ticket for the rest of
its lifetime, shepherding it to resolution or oblivion as necessary. When the database is that
large, the issue manager becomes more of an overall coordinator, spending less time looking
at each ticket herself and more time getting it into the right person's hands.

Transitions
From time to time, a person in a position of ongoing responsibility (e.g., patch manager,
translation manager, etc) will become unable to perform the duties of the position. It may be
because the job turned out to be more work than he anticipated, or it may be due to other fac-
tors: a change in employment, a new baby, whatever.

When a person gets swamped like this, he usually doesn't notice it right away. It happens
by slow degrees, and there's no point at which he consciously realizes that he can no longer
fulfill the duties of the role. Instead, the rest of the project just doesn't hear much from him
for a while. Then there will suddenly be a flurry of activity, as he feels guilty for neglecting
the project for so long and sets aside a night to catch up. Then you won't hear from him for a
while longer, and then there might or might not be another flurry. But there's rarely an unso-
licited formal resignation. To resign would mean openly acknowledging to himself that his
circumstances have changed and that his ability to fulfill a commitment has been permanent-
ly reduced. This is something that people are often reluctant to admit.

Therefore, it's up to you and the others in the project to notice what's happening — or rather,
not happening — and to ask the person what's going on. The inquiry should be friendly and
100% guilt-free. Your purpose is to find out a piece of information, not to make the person
feel bad. Generally, the inquiry should be visible to the rest of the project, but if you know of
some special reason why a private inquiry would be better, that's fine too. The main reason
to do it publicly is so that if the person responds by saying that he won't be able to do the job
anymore, there's a context established for your next public post: a request for a new person to
fill that role.

Sometimes, a person is unable to do the job he's taken on, but is either unaware or unwilling
to admit that fact. Of course, anyone may have trouble at first, especially if the responsibili-
ty is complex. However, if someone just isn't working out in the role he's taken on, even af-
ter everyone else has given all the help and suggestions they can, then the only solution is for

256

Managing Participants

him to step aside and let someone new have a try. And if the person doesn't see this himself,
he'll need to be told. There's basically only one way to handle this, I think, but it's a multistep
process and each step is important.

First, make sure your own perception is accurate. Privately talk to others in the project to
see if they agree that the problem is as serious as you think it is. Even if you're already posi-
tive, this serves the purpose of letting others know that you're considering asking the person
to step aside. Usually no one will object to that — they'll just be happy you're taking on the
awkward task, so they don't have to!

Next, privately contact the person in question and tell him, kindly but directly, about the
problems you see. Be specific, giving as many examples as possible. Make sure to point out
how people had tried to help, but that the problems persisted without improving. You should
expect this email to take a long time to write, but with this sort of message, if you don't back
up what you're saying, you shouldn't say it at all. Say that you would like to find a some-
one new to fill the role, but also point out that there are many other ways to contribute to the
project. At this stage, don't say that you've talked to others about it; nobody likes to be told
that people were conspiring behind his back.

There are a few different ways things can go after that. The most likely reaction is that he'll
agree with you, or at any rate not want to argue, and be willing to step down. In that case,
suggest that he make the announcement himself, and then you can follow up with a post
seeking a replacement.

Or, he may agree that there have been problems, but ask for a little more time (or for one
more chance, in the case of discrete-task roles like release manager). How you react to that
is a judgement call, but whatever you do, don't agree to it just because you feel like you can't
refuse such a reasonable request. That would prolong the agony, not lessen it. There is of-
ten a very good reason to refuse the request — namely, that there have already been plenty
of chances and that's how things got to where they are now. Here's how I put it in a mail to
someone who was filling the release manager role but was not really suited for it:

> If you wish to replace me with some one else,
> I will gracefully pass on the role to who
> comes next. I have one request, which I
> hope is not unreasonable. I would like to
> attempt one more release in an effort to
> prove myself.

I totally understand the desire (been there
myself!), but in this case, we shouldn't do the
"one more try" thing.

257

Managing Participants

This isn't the first or second release, it's the
sixth or seventh... And for all of those, I know
you've been dissatisfied with the results too
(because we've talked about it before). So we've
effectively already been down the one-more-try
route. Eventually, one of the tries has to be the
last one... I think [this past release] should be
it.

In the worst case, the person may disagree outright. Then you have to accept that things are
going to be awkward and plow ahead anyway. Now is the time to say that you talked to oth-
er people about it (but still don't say who until you have their permission, since those con-
versations were confidential), and that you don't think it's good for the project to continue as
things are. Be insistent, but never threatening. Keep in mind that with most roles, the tran-
sition really happens the moment someone new starts doing the job, not the moment the old
person stops doing it. For example, if the contention is over the role of, say, issue manager,
at any point you and other influential people in the project can solicit for a new issue man-
ager. It's not actually necessary that the person who was previously doing it stop doing it, as
long as he does not sabotage (deliberately or otherwise) the efforts of the new person.

Which leads to a tempting thought: instead of asking the person to resign, why not just frame
it as a matter of getting him some help? Why not just have two issue managers, or patch
managers, or whatever the role is?

Although that may sound nice in theory, it is generally not a good idea. What makes the
manager roles work — what makes them useful, in fact — is their centralization. Those
things that can be done in a decentralized fashion are usually already being done that way.
Having two people fill one managerial role introduces communications overhead between
those two people, as well as the potential for slippery displacement of responsibility ("I
thought you brought the first aid kit!" "Me? No, I thought you brought the first aid kit!"). Of
course, there are exceptions. Sometimes two people work extremely well together, or the na-
ture of the role is such that it can easily be spread across multiple people. But these are not
likely to be applicable when you see someone flailing in a role he is not suited for. If he'd ap-
preciated the problem in the first place, he would have sought such help before now. In any
case, it would be disrespectful to let someone waste time continuing to do a job no one will
pay attention to.

The most important factor in asking someone to step down is privacy: giving him the space
to make a decision without feeling like others are watching and waiting. I once made the
mistake — an obvious mistake, in retrospect — of mailing all three parties at once in order
to ask Subversion's release manager to step aside in favor of two others who were ready to
step up. I'd already talked to the two new people privately, and knew that they were willing

258

Managing Participants

to take on the responsibility. So I thought, naïvely and somewhat insensitively, that I'd save
some time and hassle by sending one mail to all of them to initiate the transition. I assumed
that the current release manager was already fully aware of the problems and would see the
reasonableness of my point immediately.

I was wrong. The current release manager was very offended, and rightly so. It's one thing
to be asked to hand off the job; it's another thing to be asked that in front of the people you'll
hand it off to. Once I got it through my head why he was offended, I apologized. He eventu-
ally did step aside gracefully, and continued to be involved with the project. But his feelings
were hurt, and needless to say, this was not the most auspicious of beginnings for the new re-
lease managers either.

Committers

Defining "Committer" and "Commit Access"

For the purposes of this section, committer means someone who has commit access:
the right to make changes to the copy of the code that will be used for the project's
next official release.

This precise definition is important because, after all, anyone can set up a repository
containing a copy of the project's code and allow themselves to commit to that reposi-
tory; indeed, that is a standard development procedure with decentralized version con-
trol systems such as Git. But what matters for the project's purposes is who has the
ability to put changes into the authoritative copy — that is, the central shared copy in-
to which contributors' changes are merged and from which releases are made.

Because in older, centralized version control systems, there was normally only one
repository anyway, the term "commit access" corresponded closely to who was actu-
ally using the "commit" command (see commit [74]) to put changes into the group's
shared repository. These days it corresponds to those who run the "push" or "pull"
commands (see push [74] and pull [74]) to put changes into that repository. It is the
same idea either way. The authoritative repository is a social concept, not a technical
concept, and the mechanics of how changes get into it are not important here. Open
source projects continue to use the term "committer" in this identifying sense, even
though formally speaking the "commit" command is no longer where the gating hap-
pens.

As the only formally distinct class of people found in all open source projects, committers
deserve special attention in this book. Committers are an unavoidable concession to discrimi-

259

Managing Participants

nation in a system which is otherwise as non-discriminatory as possible. But "discrimination"
is not meant as a pejorative here. The function committers perform is utterly necessary, and I
do not think a project could succeed without it. Quality control requires, well, control. There
are always many people who feel qualified to make changes to a program, and some small-
er number who actually are.11 The project cannot rely on people's own judgement; it must
maintain standards and grant commit access only to those who meet those standards. On the
other hand, having people who can commit changes directly working side-by-side with peo-
ple who cannot sets up an obvious power dynamic. That dynamic must be managed so that it
does not harm the project.

In the section called “Who Votes?” [109], we already discussed the mechanics of choosing
new committers, as a subset of choosing maintainers generally. Here we will look at the stan-
dards by which potential new committers should be judged, and how this process should be
presented to the larger community.

Committers vs Maintainers
If you haven't already, please read the section called “Not All Maintainers Are Coders” [110]
and take its point to heart.

The discussion here is specifically about committers, not about all maintainers. Because
committers are ultimately responsible for the project's code base, and for the quality of its
public software releases, the long-term health of the project is inescapably dependent on how
they approach their work. This doesn't mean that other kinds of contributors can't also affect
the project's health; it just means that if the committers aren't doing their job well, there is no
way the project can succeed.

Choosing Committers
A good basis for choosing committers is the Hippocratic Principle: first, do no harm.

The most important criterion is not technical skill or even deep familiarity with the code, but
simply that a person show good judgement. Judgement includes knowing what not to take
on. Someone might post only small patches, fixing fairly simple problems in the code, but
if his patches apply cleanly, do not contain bugs, and are mostly in accord with the project's
log message and coding conventions, and there are enough patches to show a clear pattern,
then an existing committer should propose him for commit access. If at least (say) three peo-
ple say yes, and no one objects, then the offer is made. True, there might be no evidence yet

11Even an experienced developer is often not immediately qualified to make changes in a project when still new to that
project. One of the signs of an experienced developer, in fact, is when they themselves recognize that and make sure to
get the help they need to learn their way around.

260

Managing Participants

that the person is able to solve complex problems in all areas of the codebase, but that is ir-
relevant: he has made it clear that he is capable of judging his own abilities, and that is the
important thing.

When a new committer proposal does provoke a discussion, it is usually not about techni-
cal ability, but rather about the person's behavior in the project's discussion forums. Some-
times someone shows technical skill and an ability to meet the project's formal code con-
tribution standards, yet is also consistently belligerent or uncooperative in public forums.
That's a serious concern; if the person doesn't seem to shape up over time, even in response
to hints, then don't add him as a committer no matter how skilled he is. In an open source
project, social skills, or the ability to "play well in the sandbox", are as important as raw
technical ability. Because everything is under version control, the penalty for adding a com-
mitter you shouldn't have added is not so much the problems it could cause in the code (re-
view would spot those quickly anyway), but that it might eventually force the project to re-
voke the person's commit access — an action that is never pleasant and can sometimes frag-
ment the whole community.

Some projects insist that a potential committer first demonstrate a certain level of technical
expertise and persistence by submitting some number of nontrivial patches — that is, not on-
ly do these projects want to know that the person will do no harm, they also want to know
that he is likely to do good across the codebase. This isn't always a bad policy, but be careful
that it doesn't start to turn committership into a matter of membership in an exclusive club.
The question to keep in everyone's mind should be "What will bring the best results for the
code?" not "Will we devalue the social status associated with committership by admitting
this person?"

The point of commit access is not to reinforce people's self-worth; it's to allow good changes
to enter the code with a minimum of fuss. If you have 100 committers, 12 of whom make
large changes on a regular basis, and the other 88 of whom just fix typos and small bugs a
few times a year, that's still better than having only the 12.

Revoking Commit Access
The first thing to be said about revoking commit access is: try not to be in that situation
in the first place. Depending on whose access is being revoked, and why, the discussions
around such an action can be very divisive. Even when not divisive, they will be a time-con-
suming distraction from productive work.

However, if you must do it, the discussion should be had privately among the same people
who would be in a position to vote for granting that person whatever flavor of commit access
they currently have. The person himself should not be included. This contradicts the usual in-
junction against secrecy, but in this case it's necessary. First, no one would be able to speak

261

Managing Participants

freely otherwise. Second, if the motion fails, you don't necessarily want the person to know
it was ever considered, because that could open up questions ("Who was on my side? Who
was against me?") that lead to the worst sort of factionalism. In certain rare circumstances,
the group may want someone to know that revocation of commit access is or was being con-
sidered, as a warning, but this openness should be a decision the group makes. No one should
ever, on her own initiative, reveal information from a discussion and ballot that others as-
sumed were secret.

Once someone's access is revoked, that fact is unavoidably public (see the section called
“Avoid Mystery” [263]), so try to be as tactful as you can in how it is presented to the out-
side world.

Partial Commit Access
Some projects offer gradations of commit access. For example, there might be contributors
whose commit access gives them free rein in the documentation, but who do not commit to
the code itself. Common areas for partial commit access include documentation, translations,
binding code to other programming languages, specification files for packaging (e.g., Debian
dpkg configuration files, etc), and other places where a mistake will not result in a problem
for the core project.

Since commit access is sometimes not only about committing, but about being part of an
electorate (see the section called “Who Votes?” [109]), a question may naturally arise: what
can the partial committers vote on?

There is no one right answer; it depends on what sorts of partial commit domains your
project has. In the Subversion project things are fairly simple: a partial committer can vote
on matters confined exclusively to that committer's domain, and not on anything else. Impor-
tantly, the project does have a mechanism for casting advisory votes (essentially, the com-
mitter writes "+0" or "+1 (non-binding)" instead of just "+1" on the ballot). There's no reason
to silence people just because their vote isn't formally binding.

Full committers can vote on anything, just as they can commit anywhere, and only full com-
mitters vote on adding new committers of any kind. In practice, though, the ability to add
new partial committers is usually delegated: any full committer can "sponsor" a new partial
committer, and partial committers in a domain can often essentially choose new committers
for that same domain (this is especially helpful in making translation work run smoothly).

Your project may need a slightly different arrangement, depending on the nature of the
work, but the same general principles apply to all projects. Each committer should be able
to vote on matters that fall within the scope of her commit access, and not on matters out-
side that, and votes on procedural questions should default to the full committers, unless

262

Managing Participants

there's some reason (as decided by the full committers) to widen the electorate. Remember
that voting should be quite rare anyway (see the section called “When To Vote” [108]), ex-
cept for technical votes such as the change voting described in the section called “Voting on
Changes” [217].

Regarding enforcement of partial commit access: it's often best not to have the version con-
trol system enforce partial commit domains, even if it is capable of doing so. See the section
called “Authorization” [82] for the reasons why.

Dormant Committers

Some projects automatically remove people's commit access if they go a certain amount of
time (say, a year) without committing anything. I think this is usually unhelpful and even
counterproductive, for two reasons.

First, it may tempt some people into committing acceptable but unnecessary changes, just to
prevent their commit access from expiring. Second, it doesn't really serve any purpose. If the
main criterion for granting commit access is good judgement, then why assume someone's
judgement would deteriorate just because she's been away from the project for a while? Even
if she completely vanishes for years, not looking at the code or following development dis-
cussions, when she reappears she'll know how out of touch she is, and act accordingly. You
trusted her judgement before, so why not trust it always? If high school diplomas do not ex-
pire, then commit access certainly shouldn't.

Sometimes a committer may ask to be removed, or to be explicitly marked as dormant in the
list of committers (see the section called “Avoid Mystery” [263] for more about that list).
In these cases, the project should accede to the person's wishes, of course.

Avoid Mystery

Although the discussions around adding any particular new committer must be confidential,
the rules and procedures themselves need not be secret. In fact, it's best to publish them, so
people realize that the committers are not some mysterious Star Chamber, closed off to mere
mortals, but that anyone can join simply by posting good patches and knowing how to handle
herself in the community. In the Subversion project, we put this information right in the de-
veloper guidelines document, since the people most likely to be interested in how commit ac-
cess is granted are those thinking of contributing code to the project.

In addition to publishing the procedures, publish the actual list of committers. It often goes
in a file called MAINTAINERS or COMMITTERS or something like that, in the top level of
the project's source code tree. It should list all the full committers first, followed by the vari-

263

Managing Participants

ous partial commit domains and the members of each domain. Each person should be listed
by name and identifying handle(s).

Since the distinction between full commit and partial commit access is obvious and well de-
fined, it is proper for the list to make that distinction too. Beyond that, the list should not try
to indicate the informal distinctions that inevitably arise in a project, such as who is particu-
larly influential and how. It is a public record, not an acknowledgements file. List committers
either in alphabetical order, or in the order in which they arrived.

Credit
Credit is the primary currency of the free software world. Whatever people may say about
their motivations for participating in a project, I don't know many developers who would be
happy doing all their work anonymously, or under someone else's name. There are tangible
reasons for this: one's reputation in a project roughly governs how much influence one has,
and participation in an open source project can also indirectly have monetary value, because
many employers now look for it on résumés (see the section called “Hiring Open Source De-
velopers” [157]). There are also intangible reasons, perhaps even more powerful: people sim-
ply want to be appreciated, and instinctively look for signs that their work was recognized by
others. The promise of credit is therefore one of best motivators the project has. When small
contributions are acknowledged, people come back to do more.

One of the most important features of collaborative development software (see Chapter 3,
Technical Infrastructure [51]) is that it keeps accurate records of who did what, when. Wher-
ever possible, use these existing mechanisms to make sure that credit is distributed accu-
rately, and be specific about the nature of the contribution. Don't just write "Thanks to J.
Random <jrandom@example.com>" if instead you can write "Thanks to J. Random <jran-
dom@example.com> for the bug report and reproduction recipe" in a log message.

In Subversion, we set up an informal but consistent policy of crediting the reporter of a bug
in either the ticket filed, if there is one, or else in the log message of the commit that fixes the
bug. A quick survey of Subversion commit logs shows that a little over 10% of commits12

give credit to someone by name and email address, usually a person who reported, analyzed,
or perhaps even patched the bug fixed in that commit. Note that this person is different from
the developer who actually made the commit — that developer's name is already recorded
automatically by the version control system. As of mid-2005, when I last did this calculation,
slightly over two-thirds of people who later became committers themselves were credited in
this way in the commit logs, usually multiple times, before becoming a committer. This does
not, of course, prove that being credited was a factor in their continued involvement, but it

1210.57%, to be precise. 5955 out of 56331 commits (from 29 Feb 2000 through 20 Feb 2022) made use of the crediting
convention.

264

Managing Participants

surely can't hurt to set up an atmosphere in which people know they can count on their con-
tributions being publicly acknowledged.13

It is important to distinguish between routine acknowledgement and special thanks. When
discussing a particular piece of code, or some other contribution someone made, it is fine
to acknowledge their work. For example, saying "Daniel's recent changes to the delta code
mean we can now implement feature X" simultaneously helps people identify which changes
you're talking about and acknowledges Daniel's work. On the other hand, posting solely to
thank Daniel for the delta code changes serves no immediate practical purpose. It doesn't add
any information, since the version control system and other mechanisms have already record-
ed the fact that he made the changes. Thanking everyone for everything would be distracting
and ultimately information-free, since thanks are effective largely by how much they stand
out from the default, background level of favorable comment going on all the time. This does
not mean, of course, that you should never thank people. Just make sure to do it in ways that
tend not to lead to credit inflation. Following these guidelines will help:

• The more ephemeral the forum, the more free you should feel to express thanks there.
For example, thanking someone for their bugfix in passing during an chat room conversa-
tion is fine, as is an aside in an email devoted mainly to other topics. But don't post a new
email solely to thank someone, unless it's for a truly unusual feat, or if it's just one fol-
lowup in a topic-specific thread already focused on the thing that person did.

Likewise, don't clutter the project's web pages with expressions of gratitude. Once you
start that, it'll never be clear when or where to stop. And never put thanks into comments
in the code; that would only be a distraction from the primary purpose of comments,
which is to help the reader understand the code.

• The less involved someone is in the project, the more appropriate it is to thank her for
something she did. This may sound counterintuitive, but it fits with the attitude that ex-
pressing thanks is something you do when someone contributes even more than you
thought she would. Thus, to constantly thank regular contributors for doing what they nor-
mally do would be to express a lower expectation of them than they have of themselves. If
anything, you want to aim for the opposite effect!

There are occasional exceptions to this rule. It's acceptable to thank someone for fulfilling
her expected role when that role involves temporary, intense efforts from time to time. The
canonical example is the release manager, who goes into high gear around the time of each
release, but otherwise lies dormant (dormant as a release manager, in any case — she may
also be an active developer, but that's a different matter).

13Eventually this crediting system became a bit more formalized, as described in https://subversion.apache.org/docs/
community-guide/conventions.html#crediting, thus improving the project's ability to find and encourage long-term par-
ticipants, via a system known as the Contribulyzer. See the section called “The Automation Ratio” [242] for more
about this example.

265

https://subversion.apache.org/docs/community-guide/conventions.html#crediting
https://subversion.apache.org/docs/community-guide/conventions.html#crediting

Managing Participants

• As with criticism and crediting, gratitude should be specific. Don't thank people just for
being great, even if they are. Thank them for something they did that was out of the ordi-
nary, and for bonus points, say exactly why what they did was so great.

In general, there is always a tension between making sure that people's individual contribu-
tions are recognized, and making sure the project is a group effort rather than a collection of
individual glories. Just remain aware of this tension and try to err on the side of group, and
things won't get out of hand.

Forks

"Development Forks" versus "Hard Forks"
At its most basic, a fork is when one copy of a project diverges from another copy: think
"fork in the road".

What that divergence actually means for the project depends on the intentions behind the
fork. There are two types of forks: development forks and hard forks. The distinction be-
tween them is important.

Development forks are very common; in fact, they are the normal way development is done
in most projects today. A developer creates her own public copy of the project's authoritative
repository, makes some changes, then submits the changes back to the project directly from
the forked copy.14 Development forks are done on a routine basis as part of the regular con-
tribution cycle, and have no negative effect on the social cohesiveness of the project. They
are really just an extension of the concept of development branches.

Hard forks (also sometimes called social forks) are much less common, and are much more
significant when they happen. A hard fork is when a group of developers disagrees with the
direction of the project and decides to create a divergent version more in line with their own
vision. Of course, one of the technical actions required for this is to create their own copy of
the project's repository, and perhaps of its bug database and other assets as well. This new
copy of the project represents a potentially permanent divergence, and developers on both
sides of the fork are aware of this; thus, it is a completely different beast from a cooperative
development fork.

A hard fork is almost always accompanied by long discussions and rationales, in which de-
velopers try to persuade each other of the merits of one or the other side of the fork, or of the

14This is the "pull request" workflow first popularized by GitHub.com (see the section called “Pull Requests / Merge Re-
quests” [84]). GitHub's decision to use the term "fork" instead of "clone" to refer to the personal copies in which devel-
opment is done is largely responsible for the newer "development fork" sense of "fork".

266

Managing Participants

merits of ending the fork and reunifying. Since hard forks have implications for a project's
stability and ability to continue attracting developers, knowing how to constructively initiate
or react to a hard fork of your project is useful — useful even if a fork never happens, since
understanding what leads to hard forks, and signaling clearly how you will behave in such an
event, can sometimes prevent the fork from happening in the first place.

The rest of this section is about hard forks, not development forks. To save space, I will just
use the word "fork" instead of "hard fork".

Figuring Out Whether You're the Fork
In the section called “Forkability” [102], we saw how the potential to fork has important ef-
fects on how projects are governed. But what happens when a fork actually occurs? How
should you handle it, and what effects can you expect it to have? Conversely, when should
you initiate a fork?

The answers depend on the reasons for the fork. Some forks are due to amicable but irrecon-
cilable disagreements about the direction of the project; perhaps more are due to both tech-
nical disagreements and interpersonal conflicts. Of course, it's not always possible to tell the
difference between the two, as technical arguments may involve personal elements as well.
What all forks have in common is that one group of developers (or sometimes even just one
developer) has decided that the costs of working with some or all of the others now outweigh
the benefits.

Once a project forks, there is no definitive answer to the question of which fork is the "true"
or "original" project. People will colloquially talk of fork F coming out of project P, as
though P is continuing unchanged down some natural path while F diverges into new terri-
tory, but this is, in effect, a declaration of how that particular observer feels about it. Since
"the project" is ultimately a social concept in the first place, when a large enough percentage
of observers agree that one side or the other is the project or is the fork, that belief starts to
become true. It is not the case that there is an objective truth from the outset, one that we are
merely imperfectly able to perceive at first. Rather, the perceptions are the objective truth,
since ultimately a project — or a fork — is an entity that exists only in people's minds any-
way.

If those initiating the fork feel that they are sprouting a new branch off the main project, the
perception question is resolved immediately and easily. Everyone, both developers and users,
will treat the fork as a new project, with a new name (perhaps based on the old name, but
easily distinguishable from it), a separate web site, and a separate philosophy or goal. Things
get messier, however, when both sides feel they are the legitimate guardians of the original
project and therefore have the right to continue using the original name. If there is some or-
ganization with trademark rights to the name (see the section called “Trademarks” [289]),

267

Managing Participants

or legal control over the domain or web pages, that usually resolves the issue by fiat: that or-
ganization will decide who is the original project and who is the fork, because it holds all the
cards in a public relations showdown. Naturally, things rarely get that far: since everyone al-
ready knows what the power dynamics are, they will avoid fighting a battle whose outcome
is known in advance, and will just jump straight to the end result instead.

Fortunately, in most cases there is little doubt as to which is the project and which is the fork,
because a fork is, in essence, a vote of confidence. If more than half of the developers are
in favor of whatever course the fork proposes to take, usually there is no need to fork — the
project can simply go that way itself, unless it is run as a dictatorship with a particularly
stubborn dictator. On the other hand, if fewer than half of the developers are in favor, the
fork is a clearly minority rebellion, and both courtesy and common sense indicate that it
should think of itself as the divergent branch rather than the main line.

When a fork occurs, there can be a question of what happens to non-copyable assets: not just
trademarks, but perhaps money in the bank, hardware, that full-color conference banner sit-
ting in a storage locker somewhere, etc. Sometimes those questions are resolved indepen-
dently of the project's decision-making procedures because those assets already had formal
owners, and in each case the owner will decide what happens to the asset. But in cases where
the actual ownership is in dispute, or the asset belongs in some way to the project as a whole,
there is no magic answer. If someone decides to make a fuss, the dispute might wind up in a
court of law. In this respect, open source projects are not different from any other endeavor
involving multiple people: when agreement cannot be reached but no one is willing to give
in, the last resort is the legal system. It is extremely rare, however, for things to go that far in
a free software project (I can't think of any examples, actually), because usually there is no
participant for whom going to court is a better option than just giving up their side of the ar-
gument anyway.15

Handling a Fork
If someone threatens a fork in your project, keep calm and remember your long-term goals.
The mere existence of a fork isn't what hurts a project; rather, it's the loss of developers and
users. Your real aim, therefore, is not to squelch the fork, but to minimize these harmful ef-
fects. You may be mad, you may feel that the fork was unjust and uncalled for, but express-
ing that publicly can only alienate undecided developers. Instead, don't force people to make
exclusive choices, and be as cooperative as is practicable with the fork.

Don't remove someone's commit access in your project just because she decided to work on
the fork. Her work on the fork doesn't mean that she has suddenly lost her competence to
work on the original project; committers before should remain committers afterward. Beyond

15See also the concept of BATNA: https://en.wikipedia.org/wiki/Best_alternative_to_a_negotiated_agreement.

268

https://en.wikipedia.org/wiki/Best_alternative_to_a_negotiated_agreement

Managing Participants

that, you should express your desire to remain as compatible as possible with the fork, and
say that you hope developers will port changes between the two whenever appropriate. If you
have administrative access to the project's servers, publicly offer the forkers infrastructure
help at startup time. For example, offer them a complete export of the bug database if there's
no other way for them to get it. Ask them if there's anything else they need, and provide it
if you can. Bend over backward to show that you are not standing in the way, and that you
want the fork to succeed or fail on its own merits and nothing else.

The reason to do all this — and do it publicly — is not to actually help the fork, but to per-
suade developers that your side is a safe bet, by appearing as non-vindictive as possible. In
war it sometimes makes sense (strategic sense, if not human sense) to force people to choose
sides, but in free software it almost never does. In fact, after a fork some developers often
openly work on both projects, doing their best to keep the two compatible. These developers
help keep the lines of communication open after the fork. They allow your project to benefit
from interesting new features in the fork (yes, the fork may have things you want), and also
increase the chances of a merger down the road.

Sometimes a fork becomes so successful that, even though it was regarded even by its own
instigators as a fork at the outset, it becomes the version everybody prefers, and eventual-
ly supplants the original by popular demand. A famous instance of this was the GCC/EGCS
fork. The GNU Compiler Collection (GCC, formerly the GNU C Compiler) is the most pop-
ular open source native-code compiler, and also one of the most portable compilers in the
world. Due to disagreements between GCC's official maintainers and Cygnus Software,16

one of GCC's most active developer groups, Cygnus created a fork of GCC called EGCS.
The fork was deliberately non-adversarial: the EGCS developers did not, at any point, try to
portray their version of GCC as a new official version. Instead, they concentrated on making
EGCS as good as possible, incorporating patches at a faster rate than the official GCC main-
tainers. EGCS grew in popularity, and eventually some major operating system distributors
decided to package EGCS as their default compiler instead of GCC. At this point, it became
clear to the GCC maintainers that holding on to the "GCC" name while everyone switched to
the EGCS fork would burden everyone with a needless name change, yet do nothing to pre-
vent the switchover. So GCC adopted the EGCS codebase, and there is once again a single
GCC, but greatly improved because of the fork.

This example shows why you cannot always regard a fork as an unadulteratedly bad thing.
A fork may be painful and unwelcome at the time, but you cannot necessarily know whether
it will succeed. Therefore, you and the rest of the project should keep an eye on it, and be
prepared not only to absorb features and code where possible, but in the most extreme case
to even join the fork if it gains the bulk of the project's mindshare. Of course, you will often
be able to predict a fork's likelihood of success by seeing who joins it. If the fork is started

16Now part of RedHat, which later became part of IBM, which I suppose will eventually be part of Amazon, along with
everything else, so I might as well prepare this footnote ahead of time.

269

Managing Participants

by the project's biggest complainer and is joined by a handful of disgruntled developers who
weren't behaving constructively anyway, they've essentially solved a problem for you by
forking, and you probably don't need to worry about the fork taking momentum away from
the original project. But if you see influential and respected developers supporting the fork,
you should ask yourself why. Perhaps the project was being overly restrictive, and the best
solution is to adopt into the mainline project some or all of the changes contemplated by the
fork — in essence, to avoid the fork by becoming it.

Initiating a Fork
All the advice below assumes that you are forking as a last resort. Exhaust all other possi-
bilities before starting a fork. Forking almost always means losing developers, with only an
uncertain promise of gaining new ones later. It also means starting out with competition for
users' attention: everyone who's about to install the software has to ask themselves: "Hmm,
do I want that one or the other one?" Whichever one you are, the situation is messy, because
a question has been introduced that wasn't there before. Some people maintain that forks are
healthy for the software ecosystem as a whole, by a standard natural selection argument: the
fittest will survive, which means that, in the end, everyone gets better software. This may be
true from the ecosystem's point of view, but it's not true from the point of view of any indi-
vidual project. Most forks do not succeed, and most projects are not happy to be forked.

A corollary is that you should not use the threat of a fork as an extremist debating tech-
nique — "Do things my way or I'll fork the project!" — because everyone is aware that a
fork that fails to attract developers away from the original project is unlikely to survive long.
All observers — not just developers, but users and operating system packagers too — will
make their own judgement about which side to choose. You should therefore appear ex-
tremely reluctant to fork, so that if you finally do it, you can credibly claim it was the only
route left.

Do not neglect to take all factors into account in evaluating the potential success of your
fork. For example, if many of the developers on a project have the same employer, then even
if they are disgruntled and privately in favor of a fork, they are unlikely to say so out loud
if they know that their employer is against it. Many free software programmers like to think
that having a free license on the code means no one company can dominate development. It
is true that the license is, in an ultimate sense, a guarantor of freedom: if others want badly
enough to fork the project, and have the resources to do so, they can. But in practice, some
projects' development teams are mostly funded by one entity, and there is no point pretend-
ing that the entity's support doesn't matter. If it is opposed to the fork, its developers are un-
likely to take part, even if they secretly want to.

If, after careful consideration, you still conclude that you must fork, line up support private-
ly first, then announce the fork in a non-hostile tone. Even if you are angry at, or disappoint-

270

Managing Participants

ed with, the current maintainers, don't say that in the message. Just dispassionately state what
led you to the decision to fork, and that you mean no ill will toward the project from which
you're forking. Assuming that you do consider it a fork (as opposed to an emergency preser-
vation of the original project), emphasize that you're forking the code and not the name, and
choose a name that does not conflict with the project's name. You can use a name related to
the original name, as long as it will not cause identity confusion. Of course it's fine to explain
prominently on the fork's home page that it descends from the original program, and even
that it hopes to supplant it. Just don't make users' lives harder by forcing them to untangle an
identity dispute.

Finally, you can get things started on the right foot by automatically granting all committers
of the original project commit access to the fork, including even those who openly disagreed
with the need for a fork. Even if they never use the access, your message is clear: there are
disagreements here, but no enemies, and you welcome code contributions from any compe-
tent source.

271

Chapter 9. Legal Matters:
Licenses, Copyrights,
Trademarks and Patents

Legal questions have assumed a somewhat more prominent role in free software projects
over the last decade or so. It is still the case that the most important things about your project
are its the quality of its code, its features, and the health of its developer community. How-
ever, although all open source licenses share the same basic guarantees of freedom, their
terms are not exactly the same in all details. The particular license your project uses can af-
fect which entities decide to get involved in it and how. You will therefore need a basic un-
derstanding of free software licensing, both to ensure that the project's license is compatible
with its goals, and to be able to discuss licensing decisions with others.

Please note that I am not a lawyer, and that nothing in this book should be construed as for-
mal legal advice. For that, you'll need to hire a lawyer or be one.1

Terminology
In any discussion of open source licensing, the first thing that becomes apparent is that there
seem to be many different words for the same thing: free software, open source, FOSS, F/
OSS, and FLOSS. Let's start by sorting those out, along with a few other terms.

free software

Software that can be freely shared and modified, including in source code form. The
term was first coined by Richard Stallman, who codified it in the GNU General Public
License (GPL), and who founded the Free Software Foundation (https://www.fsf.org/) to
promote the concept.

Although "free software" covers the same set of software2 as "open source", the FSF,
among others, prefers the former term because it emphasizes the idea of freedom, and

1For a deeper understanding of how copyright law relates to free software, see https://softwarefreedom.org/re-
sources/2012/ManagingCopyrightInformation.html, published by the Software Freedom Law Center.
2Technically, there are certain uncommon situations in which software can be distributed in a way that meets only one
of the Free Software Definition and the Open Source Definition. These are very rare edge cases, however; they do not af-
fect anything in this chapter, so I won't go into detail about them here. To learn more about them, one place to start is a
conversation Alexandre Oliva and I had in 2020, at https://identi.ca/lxoliva/comment/FzE-8xdyS1au9z22QKA-TA, in
which he gives some examples.

272

https://www.fsf.org/
https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html
https://softwarefreedom.org/resources/2012/ManagingCopyrightInformation.html
https://identi.ca/lxoliva/comment/FzE-8xdyS1au9z22QKA-TA

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

the concept of freely redistributable software as primarily a social movement rather than
a technical one. The FSF acknowledges that the term is ambiguous — it could mean
"free" as in "zero-cost", instead of "free" as in "freedom" — but feels that it's still the
best term, all things considered, and that the other possibilities in English have their own
ambiguities. (Throughout this book, "free" is used in the "freedom" sense, not the "ze-
ro-cost" sense.)

open source software

Free software under another name. The different name is sometimes used to indicate a
philosophical difference, however. In fact, the term "open source" was coined, by the
group that founded the Open Source Initiative (https://www.opensource.org/), as al-
ternative labeling for "free software". Their goal at the time was largely to make such
software a more palatable choice for corporations, by presenting it as a development
methodology rather than as a political movement.3

While any license that is free is also open source, and vice versa (with a few minor ex-
ceptions that have no practical consequences), people tend to pick one term and stick
with it. In general, those who prefer "free software" are more likely to have a philosoph-
ical or moral stance on the issue, while those who prefer "open source" either don't view
it as a matter of freedom, or are not interested in advertising the fact that they do. See
the section called “"Free" Versus "Open Source"” [10] for a more detailed history of this
terminological schism.

The Free Software Foundation has an excellent — utterly unobjective, but nuanced and
quite fair — exegesis of the two terms, at https://www.fsf.org/licensing/essays/free-soft-
ware-for-freedom.html. The Open Source Initiative's take on it can be found at https://
opensource.org/faq#free-software.

FOSS, F/OSS, FLOSS

Where there are two of anything, there will soon be three, and that is exactly what is
happening with terms for free software. Many people have started using "FOSS" (or,
more rarely, "F/OSS"), standing for "Free / Open Source Software". Another variant
gaining momentum is "FLOSS", which stands for "Free / Libre Open Source Soft-
ware" (libre is familiar from many Romance languages and does not suffer from the am-
biguities of "free"; see https://en.wikipedia.org/wiki/FLOSS for more).

3Disclosure: Long after these events, I served as a member of the Board of Directors of the Open Source Initiative for
three years, from 2011-2014. The ideological gap between the OSI and the FSF was much smaller by then than it was
when the OSI was founded, in my opinion, and the two organizations have increasingly found common ground on which
to cooperate. I remain a happy member of both, and urge you to join them too: https://opensource.org/join and https://fs-
f.org/join.

273

https://www.opensource.org/
https://www.fsf.org/licensing/essays/free-software-for-freedom.html
https://www.fsf.org/licensing/essays/free-software-for-freedom.html
https://opensource.org/faq#free-software
https://opensource.org/faq#free-software
https://en.wikipedia.org/wiki/FLOSS
https://opensource.org/join
https://fsf.org/join
https://fsf.org/join

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

All these terms mean the same thing: software that can be modified and redistributed by
everyone, sometimes — but not always — with the requirement that derivative works be
freely redistributable under the same terms.

DFSG-compliant

Compliant with the Debian Free Software Guidelines (https://www.debian.org/so-
cial_contract#guidelines). This is a widely-used test for whether a given license is truly
open source (free, libre, etc). The Debian Project's mission is to maintain an entirely free
operating system, such that someone installing it need never doubt that she has the right
to modify and redistribute any or all of the system. The Debian Free Software Guide-
lines are the requirements that a software package's license must meet in order to be in-
cluded in Debian. Because the Debian Project spent a good deal of time thinking about
how to construct such a test, the guidelines they came up with have proven very robust
(see https://www.debian.org/social_contract#guidelines), and as far as I'm aware, no se-
rious objection to them has been raised either by the Free Software Foundation or the
Open Source Initiative. If you know that a given license is DFSG-compliant, you know
that it guarantees all the important freedoms (such as forkability even against the orig-
inal author's wishes) required to sustain the dynamics of an open source project. Since
2004, the Debian Project has maintained a list of known DFSG-compliant licenses at
https://wiki.debian.org/DFSGLicenses. All of the licenses discussed in this chapter are
DFSG-compliant.

OSI-approved

Approved by the Open Source Initiative. This is another widely-used test of whether a
license permits all the necessary freedoms. The OSI's definition of open source software
is based on the Debian Free Software Guidelines, and any license that meets one defini-
tion almost always meets the other. There have been a few exceptions over the years, but
only involving niche licenses and none of any relevance here.4 The OSI maintains a list
of all licenses it has ever approved, at https://www.opensource.org/licenses/, so that be-
ing "OSI-approved" is an unambiguous state: a license either is or isn't on the list.

The Free Software Foundation also maintains a list of licenses at https://www.fsf.org/li-
censing/licenses/license-list.html. The FSF categorizes licenses not only by whether they
are free, but whether they are compatible with the GNU General Public License. GPL
compatibility is an important topic, covered in the section called “The GPL and License
Compatibility” [278].

4There is one relatively new license, the Cryptographic Autonomy License, version 1.0 (https://opensource.org/li-
censes/CAL-1.0, approved by the OSI in 2020), that has unusual provisions regarding data portability and that has
caused some disagreement over whether it truly meets the Open Source Definition. Two good overviews of CAL-1.0
are Heather Meeker's at https://heathermeeker.com/2020/02/15/cryptographic-autonomy-license-approved-by-osi/ and
Jonathan Corbet's in Linux Weekly News at https://lwn.net/Articles/797065/.

274

https://www.debian.org/social_contract#guidelines
https://www.debian.org/social_contract#guidelines
https://www.debian.org/social_contract#guidelines
https://wiki.debian.org/DFSGLicenses
https://www.opensource.org/licenses/
https://www.fsf.org/licensing/licenses/license-list.html
https://www.fsf.org/licensing/licenses/license-list.html
https://opensource.org/licenses/CAL-1.0
https://opensource.org/licenses/CAL-1.0
https://heathermeeker.com/2020/02/15/cryptographic-autonomy-license-approved-by-osi/
https://lwn.net/Articles/797065/

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

proprietary, closed-source

The opposite of "free" or "open source." It means software distributed under traditional,
royalty-based licensing terms, where users pay per copy, or under any other terms suffi-
ciently restrictive to prevent open source dynamics from operating. Even software dis-
tributed at no charge can still be proprietary, if its license does not permit free redistribu-
tion and modification.

Generally "proprietary" and "closed-source" are synonyms. However, "closed-source"
additionally implies that the source code cannot even be seen. Since the source code
cannot be seen with most proprietary software, this is normally a distinction without a
difference. However, occasionally someone releases proprietary software under a license
that allows others to view the source code. Confusingly, they sometimes call this "open
source" or "nearly open source," etc, but that's misleading. The visibility of the source
code is not the issue; the important question is what you're allowed to do with it: if you
can't copy, modify, and redistribute, then it's not open source. Thus, the difference be-
tween proprietary and closed-source is mostly irrelevant; generally, the two can be treat-
ed as synonyms.

Sometimes commercial is used as a synonym for "proprietary," but this is carelessness:
the two are not the same. Free software is always commercial software. After all, free
software can be sold, as long as the buyers are not restricted from giving away copies
themselves. It can be commercialized in other ways as well, for example by selling sup-
port, services, and certification. There are billion-dollar companies built on free software
today, so it is clearly neither inherently anti-commercial nor anti-corporate. It is merely
anti-proprietary, or if you prefer anti-monopoly, and this is the key way in which it dif-
fers from per-copy license models.

public domain

Having no copyright holder, meaning that there is no one who has the right to restrict
copying of the work. Being in the public domain is not the same as having no author.
Everything has an author, and even if a work's author or authors choose to put it in the
public domain, that doesn't change the fact that they wrote it.

When a work is in the public domain, material from it can be incorporated into a copy-
righted work, and the derivative is thus under the same overall copyright as the original
copyrighted work. But this does not affect the availability of the original public domain
work. Thus, releasing something into the public domain is technically one way to make
it "free," according to the guidelines of most free software certifying organizations (see
https://opensource.org/faq#public-domain for more). However, there are usually good
reasons to use a license instead of just releasing into the public domain: even with free
software, certain terms and conditions can be useful, not only to the copyright holder but
to recipients as well, as the next section makes clear.

275

https://opensource.org/faq#public-domain

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

reciprocal, copyleft

A license that not only grants the freedoms under discussion here but furthermore re-
quires that those freedoms apply to any derivative works.

The canonical example of a copyleft license is still the GNU General Public License,
which stipulates that any derivative works must also be licensed under the GPL; see the
section called “The GPL and License Compatibility” [278] for more.

non-reciprocal, non-copyleft or permissive

A license that grants the freedoms under discussion here but that does not have a clause
requiring that they apply to distributed derivative works as well.

Two early and well-known examples of non-reciprocal licenses are the BSD and MIT
licenses, but the more recent Apache Software License version 2 (https://www.a-
pache.org/licenses/LICENSE-2.0) is also very popular — increasingly so — and some-
what better adapted to the legal landscape of modern open source software development.

"Free Software" and "Open Source" Are the Same Licenses

Occasionally people will make the mistake of thinking that copyleft licenses (like the
GPL) comprise "free software", while the non-reciprocal licenses comprise "open
source". This is wrong, but it comes up just often enough to be worth mentioning here.
Both free software and open source include both the copyleft and non-copyleft licens-
es — this is something that all the license-certifying organizations, including the FSF,
the OSI, and the Debian Project, have always agreed on. If you see someone, particu-
larly a journalist, making this mistake, please politely correct them, perhaps by point-
ing them to this note (https://producingoss.com/en/legal.html#free-open-same). The
last thing we need is yet more terminological confusion in the free and open source
software movement.

Aspects of Licenses
Although there are many different free software licenses available, in the important respects
they all say the same things: that anyone can see and use the code, that anyone can modi-
fy the code, that anyone can redistribute it both in original and modified form, and that the
copyright holders and authors provide no warranties whatsoever (avoiding liability is espe-
cially important given that downstream recipients might run modified versions without even
knowing it). The differences between licenses boil down to a few oft-recurring issues:

276

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://producingoss.com/en/legal.html#free-open-same

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

compatibility with proprietary licenses

The non-reciprocal (non-copyleft) free licenses allow the covered code to be used in
proprietary programs. This does not affect the licensing terms of the proprietary pro-
gram: it is still as proprietary as ever, it just happens to contain some code from a non-
proprietary source. The Apache License, X Consortium License, BSD-style license, and
the MIT-style license are all examples of proprietary-compatible licenses.

compatibility with other types of free licenses

Most of the commonly-used non-reciprocal free licenses are compatible with each other,
meaning that code under one license can be combined with code under another, and the
result distributed under either license without violating the terms of the other. Some of
them are also compatible with some of the copyleft licenses, meaning that a work com-
prised of code under the non-reciprocal license and code under the copyleft license can
be distributed as a combined work under the copyleft license (since that's the license that
places more conditions), with the original code in each case remaining under its original
license. Typically these compatibility issues come up between some non-reciprocal li-
cense and the GNU General Public License.5 This topic is discussed in more detail in the
section called “The GPL and License Compatibility” [278].

attribution requirements

Some free licenses stipulate that any use of the covered code be accompanied by a no-
tice, whose placement and display is usually specified, giving credit to the authors or
copyright holders of the code. These licenses are often still proprietary-compatible: they
do not necessarily demand that the derivative work be free, itself, merely that credit be
given for its free parts.

protection of trademark

This is a type of attribution requirement. Trademark-protecting licenses specify that the
name of the original software (or its copyright holders, or their institution, etc) may not
be used to identify derivative works, at least not without prior written permission. This
restriction can be implemented purely via trademark law anyway, whether or not it is al-
so stipulated in the copyright license, so such clauses are somewhat legally redundan-
t — in effect, they amplify a trademark infringement into a copyright infringement as
well.

Although attribution requirements insist that a certain name be used, while trademark
protections insist that it not be used, they are both expressions of the same concept: that

5Or its variant, the GNU Affero GPL (see the section called “The GNU Affero GPL: A Version of the GNU GPL for
Server-Side Code” [282]).

277

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

the original code's reputation be preserved, and not tarnished by associations beyond its
control.

patent snapback

Certain licenses (e.g., the GNU General Public License version 3, the Apache License
version 2, the Mozilla Public License 2.0, and a few others) contain language designed
to prevent people from using patent law to take away the rights granted under copy-
right law by the licenses. They require contributors to grant patent licenses along with
their contribution, covering any patents licenseable by the contributor that would be in-
fringed by their contribution (or by the incorporation of their contribution into the work
as a whole). Then they go further: if someone using software under the license initiates
patent litigation against another party, claiming that the covered work infringes, the ini-
tiator automatically loses all the patent grants otherwise provided for that work by the li-
cense, and in the case of the GPL-3.0 loses their right to distribute under the license alto-
gether.

Most of these stipulations are not mutually exclusive, and some licenses include several. The
common thread among them is that they place certain easily satisfiable demands on the re-
cipient in exchange for the recipient's right to use the code under the freedoms granted by the
license.

The GPL and License Compatibility
The sharpest dividing line in licensing is that between proprietary-incompatible and propri-
etary-compatible licenses, that is, between the copyleft licenses and everything else.

The canonical example of a copyleft license is the GNU General Public License (along with
its newer descendant, the Affero GNU General Public License or AGPL, introduced later in
this chapter in the section called “The GNU Affero GPL: A Version of the GNU GPL for
Server-Side Code” [282]), and one of the most important considerations in choosing the
GPL (or AGPL) is the extent to which it is compatible with other licenses. For brevity, I'll re-
fer just to the GPL below, but most of this section applies to the AGPL as well.

Because the primary goal of the GPL's authors is the promotion of free software, they de-
liberately crafted the license to prevent proprietary programs from being distributed with
GPLed code in them. Specifically, among the GPL's requirements (see https://www.fs-
f.org/licensing/licenses/gpl.html for its full text) are these two:

1. Any derivative work — that is, any work containing a nontrivial amount of GPLed
code — must itself be distributed under the GPL.

278

https://www.fsf.org/licensing/licenses/gpl.html
https://www.fsf.org/licensing/licenses/gpl.html

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

2. No additional restrictions may be placed on the redistribution of either the original work
or a derivative work. (The exact language is: "You may not impose any further restric-
tions on the exercise of the rights granted or affirmed under this License.")

Through these two conditions, the GPL makes freedom contagious. Once a program is copy-
righted under the GPL, its terms of redistribution are reciprocal6 — they are passed on to
anything else the code gets incorporated into, making it effectively impossible to use GPLed
code in closed-source programs. However, these same clauses also make the GPL incompat-
ible with certain other free licenses. The usual way this happens is that the other license im-
poses a requirement — for example, a credit clause requiring the original authors to be men-
tioned in some way — that is incompatible with the GPL's "You may not impose any fur-
ther restrictions..." language. From the point of view of the Free Software Foundation, these
second-order consequences are desirable, or at least not regrettable. The GPL not only keeps
your software free, but effectively makes your software an agent in pushing other software to
enforce freedom as well, by encouraging them to use the GPL.

The question of whether or not this is a good way to promote free software is one of the most
persistent holy wars on the Internet (see the section called “Avoid Holy Wars” [178]), and
we won't investigate it here. What's important for our purposes is that GPL compatibility is
something to consider when choosing a license. The GPL is a popular open source license,
and some important open source packages are licensed under it. If you want your code to be
able to be mixed freely with GPLed code, then you should pick a GPL-compatible license.
Most of the GPL-compatible open source licenses are also proprietary-compatible: that is,
code under such a license can be used in a GPLed program, and it can be used in a propri-
etary program. Of course, the results of these mixings would not be compatible with each
other, since one would be under the GPL and the other would be under a closed-source li-
cense. But that concern applies only to the derivative works, not to the code you distribute in
the first place.

Fortunately, the Free Software Foundation maintains a list showing which licenses are com-
patible with the GPL and which are not, at https://www.gnu.org/licenses/license-list.html. All
of the licenses discussed in this chapter are present on that list, on one side or the other.

Choosing a License
When choosing a license to apply to your project, use an existing license instead of making
up a new one. And don't just use any existing license — use one of the widely-used, well-
recognized existing licenses.

6Some people use the term viral to describe the GPL's contagiousness; they do not always mean this pejoratively, but I
still prefer "reciprocal" because it's more descriptive and less connotative of disease.

279

https://www.gnu.org/licenses/license-list.html

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

Such licenses are familiar to many people already. If you use one of them, people won't feel
they have to read the legalese in order to use your code, because they'll have already read
that license a long time ago. Thus, you reduce or remove one possible barrier to entry for
your project. These licenses are also of a high quality: they are the products of much thought
and experience; indeed most of them are revisions of previous versions of themselves, and
the modern versions represent a great deal of accumulated legal and technical wisdom. Un-
less your project has truly unusual needs, it is unlikely you could do better even with a team
of lawyers at your disposal.

Below is a list of licenses that in my opinion meet these criteria; in parentheses is the stan-
dard formal abbreviation7 for each license. If you have nothing else to guide you and you
want a copyleft license, then choose either the GPL-3.0 or the AGPL-3.0 — the difference
between them will be discussed below — and if you want a non-copyleft license, choose the
MIT license. I've put those licenses in boldface to reflect this.

This list is not in order of preference, but rather in roughly descending order from strong
copyleft at the top to completely non-copyleft at the bottom:

• GNU General Public License version 3 (GPL-3.0)

• GNU Affero General Public License version 3 (AGPL-3.0)

• Mozilla Public License 2.0 (MPL-2.0)

• GNU Library or "Lesser" General Public License version 3 (LGPL-3.0)

• Eclipse Public License 1.0 (EPL-1.0)

• Apache License 2.0 (Apache-2.0)

• MIT license (MIT)

• BSD 2-Clause ("Simplified" or "FreeBSD") license (BSD-2-Clause)

The exact provisions of each license differ in various interesting ways (except for MIT and
BSD, which differ only in uninteresting ways and are basically interchangeable). There isn't
space here to explore all the possible ramifications of each license for your project, but many
good discussions of that sort are easily findable on the Internet; in particular the Wikipedia
pages for these licenses tend to give good overviews.

Note that there are some arguments for choosing the Apache License 2.0 as a default non-
copyleft license, and they are nearly as compelling as those for choosing MIT. In the end, I

7The Software Package Data Exchange (SPDX) project maintains a canonical list of licenses abbreviations, along with
whether the given license is OSI-approved, FSF-approved, or both, at https://spdx.org/licenses/.

280

https://spdx.org/licenses/

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

come down in favor of MIT because it is extremely short, and both widely used and wide-
ly recognized. While the Apache License 2.0 has the advantage of containing some explic-
it defenses against misuse of software patents, which might be important to your organiza-
tion depending on the kind of project you're launching, the MIT license is fully compatible
with all versions of the GNU General Public License, meaning that you can distributed, un-
der any version of the GPL, mixed-provenance works that contain MIT-licensed code. The
GPL-compatibility situation for the Apache License, on the other hand, is more complicat-
ed — by some interpretations, it is compatible with GPL version 3 only. Therefore, to avoid
giving your downstream redistributors the headache of having to read sentences like the pre-
ceding ones, I recommend the MIT license as the default non-copyleft license for anyone
who doesn't have a reason to choose otherwise.

The mechanics of applying a license to your project are discussed in the section called “How
to Apply a License to Your Software” [35].

The GNU General Public License
If you prefer that your project's code not be used in proprietary programs, or if you at least
don't care whether or not it can be used in proprietary programs, the GNU General Public Li-
cense, version 3, is a good choice.

When writing a code library that is meant mainly to be used as part of other programs, con-
sider carefully whether the restrictions imposed by the GPL are in line with your project's
goals. In some cases — for example, when you're trying to unseat a competing, proprietary
library that offers the same functionality8 — it may make more strategic sense to license
your code in such a way that it can be mixed into proprietary programs, even though you
would otherwise not wish this. The Free Software Foundation even fashioned an alternative
to the GPL for such circumstances: the GNU Lesser GPL9 The LGPL has weaker reciprocity
requirements than the GPL, and can be mixed more easily with non-free code. The FSF's
page about the LGPL, https://www.gnu.org/licenses/lgpl.html, has a good discussion of when
to use it.

The "or any later version" Option: Future-Proofing the
GPL

The GPL has a well-known optional recommendation that you release software under the
current version of the GPL while giving downstream recipients the option to redistribute
it under any later (i.e., future) version of the license. The way to offer this option is to put

8Once again, the report Open Source Archetypes: A Framework For Purposeful Open Source (https://opentechstrate-
gies.com/archetypes), mentioned in Chapter 1, Introduction [1], may be worth consulting if you want a strategic view of
potential purposes for an open source project and how purpose affects structure.
9Originally named the GNU Library GPL, and later renamed by the FSF.

281

https://www.gnu.org/licenses/lgpl.html
https://opentechstrategies.com/archetypes
https://opentechstrategies.com/archetypes

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

language like this in the license headers (see the section called “How to Apply a License to
Your Software” [35]) of the actual source files:

This program is free software: you can redistribute it and/or modify it un-
der the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

(Emphasis added.)

Whether you want to offer this option depends largely on how likely you think the Free Soft-
ware Foundation is to make GPL revisions that you would approve of. I think the FSF has
done a good job of that so far, and I generally do include that option when I use the GPL.
That way I don't have to be responsible for updating my software's licenses forever — which
is good, since I won't be around forever. Others can do it, either just to keep the software li-
cense up-to-date with legal developments, or to solve some future license compatibility prob-
lem that couldn't have been anticipated now (for example, see the compatibility discussion
in the section called “The GNU Affero GPL: A Version of the GNU GPL for Server-Side
Code” [282] below).

Not everyone feels the same way, however; most notably, the Linux kernel is famously li-
censed under the GNU GPL version 2 without the "or any later version" clause, and influen-
tial kernel copyright holders, especially Linus Torvalds, have expressed clearly that they do
not intend to move its license to version 3.0.

This book cannot answer the question of whether you should include the option or not. You
now know that you have the choice and that different people come to different conclusions
about it.

The GNU Affero GPL: A Version of the GNU GPL for
Server-Side Code

In 2007, the Free Software Foundation released a variant of the GPL called the GNU Affero
GPL. Its purpose was to bring copyleft-style sharing provisions to the increasing amount
of code being run as hosted services — that is, software that runs "in the cloud" on remote
servers owned by someone other than the user. This is software that users interact with on-
ly over the network and that therefore is not directly distributed to its users as executable or
source code in the normal course of usage. Many such services use GPLed software, often
with extensive modifications, yet could avoid publishing their changes because they weren't
actually distributing code.

The AGPL's solution to this was to take the GPL (version 3) and add a "Remote Network In-
teraction" clause, stating "...if you modify the Program, your modified version must promi-

282

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

nently offer all users interacting with it remotely through a computer network ... an opportu-
nity to receive the Corresponding Source of your version ... at no charge, through some stan-
dard or customary means of facilitating copying of software." This expanded the GPL's en-
forcement powers into the new world of remote application service providers. The Free Soft-
ware Foundation recommends that the GNU AGPL 3.0 be used for any software that will
commonly be run over a network.

Note that the AGPL-3.0 is not directly compatible with GPL-2.0, though it is compatible
with GPL-3.0. Since most software licensed under GPL-2.0 includes the "or any later ver-
sion" clause anyway, that software can just be shifted to GPL-3.0 if and when you need to
mix it with AGPL-3.0 code. However, if you need to mix with programs licensed strictly un-
der the GPL-2.0 (that is, programs licensed without the "or any later version" clause), the
AGPL3.0 wouldn't be compatible with that.

Although the history of the AGPL-3.0 is a bit complicated, the license itself is simple: it's
just the GPL-3.0 with one extra clause about network interaction. The Wikipedia article on
the AGPL is excellent: https://en.wikipedia.org/wiki/Affero_General_Public_License

The Copyright Holder Is Special, Even In Copyleft Li-
censes

One common misunderstanding is that licensing your software under the GPL or AGPL re-
quires you to provide source code to anyone who requests it under the terms of the license.
But that's not quite how it works. If you are the sole copyright holder in a piece of software,
then you are not bound by the copyright terms you chose, because (essentially) you can't be
forced to sue yourself for copyright infringement. You can enforce the terms on others, but
it's up to you to decide whether and when those terms apply to you. After all, because you
had the software originally, you never "distributed" it to yourself and thus are not bound by
the redistribution requirements of the license.

Of course, this only applies to situations where you own the whole copyright. If you include
others' GPL- or AGPL-licensed code in your project and then distribute the result, you are
no longer the sole copyright holder, and so you are as bound by the original terms as anyone
else who uses and redistributes that code, either unmodified or as part of a derivative work.

Is the GPL Free or Not Free?

One consequence of choosing the GPL (or AGPL) is the small possibility of finding your-
self or your project embroiled in a dispute about whether or not the GPL is truly "free", giv-
en that it places some restrictions on how you redistribute the code — namely, the restric-
tion that the code cannot be distributed under any other license. For some people, the exis-
tence of this restriction means the GPL is therefore "less free" than non-reciprocal licenses.

283

https://en.wikipedia.org/wiki/Affero_General_Public_License

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

Where this argument usually goes, of course, is that since "more free" must be better than
"less free" (after all, who's not in favor of freedom?), it follows that those licenses are better
than the GPL.

This debate is another popular holy war (see the section called “Avoid Holy Wars” [178]).
Avoid participating in it, at least in project forums. Don't attempt to prove that the GPL is
less free, as free, or more free than other licenses. Instead, emphasize the specific reasons
your project chose the GPL. If the recognizability of license was a reason, say that. If the en-
forcement of free licensing on derivative works was also a reason, say that too, but refuse to
be drawn into discussion about whether this makes the code more or less "free". Freedom is a
complex topic, and there is little point talking about it if terminology is going to be used as a
stalking horse for substance.

Since this is a book and not a mailing list thread, however, I will admit that I've never un-
derstood the "GPL is not free" argument. The only restriction the GPL imposes is that it pre-
vents people from imposing further restrictions. To say that this results in less freedom has
always seemed perverse to me. If the retention of monopoly is somehow a freedom to be pro-
tected, then the word "freedom" is no longer meaningful.

Contributor Agreements
There are three ways to handle copyright ownership for free code and documentation that
were contributed to by many people. The first is to ignore the issue of copyright entirely (I
don't recommend this). The second is to collect a contributor license agreement (CLA) from
each person who works on the project, explicitly granting the project the right to use that
person's contributions. This is usually enough for most projects, and the nice thing is that in
some jurisdictions, CLAs can be sent in electronically. The third way is to get actual copy-
right assignment (CA from contributors, so that the project (i.e., some legal entity, usually a
nonprofit) is the copyright owner for everything. This way is the most burdensome for con-
tributors, and some contributors simply refuse to do it; only a few projects still ask for as-
signment, and I don't recommend that any project require it these days.10

Note that even under centralized copyright ownership, the code11 remains free, because
open source licenses do not give the copyright holder the right to retroactively proprietize
all copies of the code. So even if the project, as a legal entity, were to suddenly turn around
and start distributing all the code under a restrictive license, that wouldn't necessarily cause a
problem for the public community. The other developers could start a fork based on the latest
free copy of the code and continue as if nothing had happened.

10Also, actual copyright transferal is subject to national law, and licenses designed for the United States may encounter
problems elsewhere (e.g., in Germany, where it's apparently not possible to fully transfer copyright).
11I'll use "code" to refer to both code and documentation from now on.

284

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

Doing Nothing

Some projects never collect CLAs or CAs from their contributors. Instead, they accept code
whenever it seems reasonably clear that the contributor intended it to be incorporated into the
project.

This can seem to work for a long time, as long as the project has no enemies. But I don't rec-
ommend it. Someone may eventually decide to sue for copyright infringement, alleging that
they are the true owner of the code in question and that they never agreed to its being dis-
tributed by the project under an open source license. For example, the SCO Group did some-
thing like this to the Linux project (see https://en.wikipedia.org/wiki/SCO-Linux_controver-
sies for details). When this happens, the project will have no documentation showing that the
contributor formally granted the right to use the code, which could make some legal defenses
more difficult.

Contributor License Agreements

CLAs probably offer the best tradeoff between safety and convenience. A CLA is typically
an electronic form that a developer fills out and sends in to the project, or even a web-based
checkbox that the developer checks before completing their first contribution to the project.
In many jurisdictions, such email submission or an online form is enough, though you should
consult with a lawyer to see what method would be best for your project.

Some projects use two slightly different CLAs, one for individuals, and one for corporate
contributors. But in both types, the core language is the same: the contributor grants the
project a "...perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copy-
right license to reproduce, prepare derivative works of, publicly display, publicly perform,
sublicense, and distribute [the] Contributions and such derivative works." Again, you should
have a lawyer approve any CLA, but if you get all those adjectives into it, you're off to a
good start.

When you request CLAs from contributors, make sure to emphasize that you are not ask-
ing for actual copyright assignment. In fact, many CLAs start out by reminding the reader of
this, for example like so:

This is a license agreement only; it does not transfer copyright ownership
and does not change your rights to use your own Contributions for any
other purpose.

285

https://en.wikipedia.org/wiki/SCO-Linux_controversies
https://en.wikipedia.org/wiki/SCO-Linux_controversies

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

Developer Certificate of Origin (DCO): An Easier Style of
CLA

More and more projects are now using a particularly convenient style of simple CLA known
as a Developer Certificate of Origin (DCO).

A DCO is essentially an attestation that the contributor intends to contribute the enclosed
code under the project's license, and that the contributor has the right to do so. The contribu-
tor indicates her understanding of the DCO once, early on, for example by emailing its text
from her usual contribution address to a special archive at the project.12 Thereafter, the con-
tributor includes a "Signed-Off-By:" line in her patches or commits, using the same identi-
ty, to indicate that the corresponding contribution is certified under the DCO. This gives the
project the legal cover it needs, while giving contributors a low-bureaucracy process for sub-
mitting their contributions. The DCO relies on the project's native open source license for
any trademark or patent provisions, which in most cases is fine.

The simplification that makes DCOs work so well is that they set the inbound license of the
contribution to be the same as the outbound license of the project. This avoids the sticky is-
sues that a more complex CLA can create, whereby the recipient of the CLA might reserve
the right to relicense the project (and thus all the past contributions) under some different
license in the future, possibly even a proprietary license. DCOs are probably the minimum
amount of CLA a free software project should adopt, but for some circumstances a more
complex CLA may still be the better course.

Proprietary Relicensing
Some companies offer open source code with a proprietary relicensing scheme,13 in which
an open source version of the software is available under the usual open source terms, while
a proprietary version is available for a fee.

Why would anyone want a proprietary version, when an open source version is already out
there? There are two separate answers, reflecting the two different kinds of proprietary reli-
censing.

The first kind is about selling exceptions to copyleft requirements, and is typically used with
code libraries rather than with standalone applications. The way it works is that the library's

12The DCO text is provided by the project, but you don't have to write your own from scratch; see https://developercer-
tificate.org/ for example.
13This is sometimes also called dual licensing, but that term is ambiguous, as it has historically also referred to releasing
open source software under two or more open source licenses simultaneously. I am grateful to Bradley Kuhn for pointing
out this ambiguity and suggesting the more accurate term.

286

https://developercertificate.org/
https://developercertificate.org/

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

owner (i.e., copyright holder), seeing that some of the library's users want to incorporate it
into their own proprietary applications, sells them a promise to not enforce the redistribu-
tion requirements of the open source version's license. This only works when the open source
code is under a copyleft-style license, of course — in practice it is usually the GPL or AGPL.

With this promise in hand, the downstream users can use the library in their proprietary prod-
uct without worry that they might be forced to share the source code to their full product un-
der the copyleft license. One well-known example of "selling exceptions" is the MySQL
database engine, which is distributed under the GPL version 2, but with a proprietary license
offering available for many years, first from the Swedish company MySQL AB, and later
from Oracle, Inc, which purchased MySQL AB in 2008.

The second kind of proprietary relicensing, sometimes called the freemium or open core
model, uses an open source version to drive sales of a presumably fancier proprietary ver-
sion (see the section called “"Commercial" vs "Proprietary"” [147] for a discussion of some
marketing pitfalls to avoid in this situation). Usually the company offering the proprietary
version is also the primary maintainer of the open source version, in the sense of supplying
most of the developer attention (this is usually inevitable, for reasons we'll get to in a mo-
ment). Furthermore, although in theory the company could offer paid support for both the
open source and proprietary versions,14 in practice they almost always offer it only for the
proprietary version, because then they can charge two fees: a subscription fee for the soft-
ware itself and a fee for the support services, with only the latter having any marginal cost to
the supplier.

You might be wondering: how can the copyright holder offer the software under a propri-
etary license if the terms of the GNU GPL stipulate that the code must be available under
less restrictive terms? The answer is that the GPL's terms are something the copyright holder
imposes on everyone else; the owner is therefore free to decide not to apply those terms to it-
self. In other words, one always has the right to not sue one's self for copyright infringement.
This right is not tied to the GPL or any other open source license; it is simply in the nature of
copyright law.

Problems with Proprietary Relicensing
Proprietary relicensing, of both varieties, tends to suffer from several problems.

First, it discourages the normal dynamics of open source projects, because any code con-
tributors from outside the company are now effectively contributing to two distinct entities:
the free version of the code and the proprietary version. While the contributor will be com-
fortable helping the free version, since that's the norm in open source projects, she may feel
less enthusiastic about her contributions being useable in a monopolized proprietary product.

14In both cases usually hosted as Software-as-a-Service (SaaS), just to be clear.

287

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

That is, unlike a straight non-copyleft license by which anyone has the right to use the code
as part of a proprietary work, here only one party has that right, and other participants in the
project are thus being asked to contribute to an asymmetric result.

This awkwardness is reflected and in some ways amplified by the fact that in a proprietary
relicensing scheme, the copyright owner must collect some kind of formal agreement from
each contributor (see the section called “Contributor Agreements” [284] earlier in this
chapter), in order to have the right to redistribute that contributor's code under a proprietary
license. Because such an agreement needs to give the collecting entity special, one-sided
rights that a typical open source contributor agreement doesn't include, the process of collect-
ing agreements starkly confronts contributors with the imbalance of the situation, and some
of them may decline to sign. (Remember, they don't need to sign a contribution agreement in
order to distribute their own changes along with the original code; rather, the company needs
the agreement in order to redistribute the contributor's changes under a proprietary license.
Asymmetry cuts both ways.)

Historically, many companies that have started out offering a seemingly clear proprietary re-
licensing option — use our product under open source terms, or buy a proprietary license so
you can use it under proprietary terms — have eventually graduated to something closer to a
"shakedown" model instead, in which anyone who makes commercially significant use of the
code ends up being pressured to purchase a proprietary license as a way of protecting their
commercial revenue stream from harassment. The precise legal bases on which this pressure
rests differ from case to case, but the overall pattern of behavior has been remarkably consis-
tent.

Naturally, neither the companies initiating these shakedowns nor the parties who are its tar-
gets (most of whom eventually capitulate) have anything to gain from going on the record
about it, so I can only tell you that I have heard of it informally and off-the-record from mul-
tiple sources, at different projects and different companies. One reason I generally advise
companies who are serious about open source development to stay away from proprietary re-
licensing is that, if history is a reliable guide, the temptation to undermine the open source li-
cense will be overwhelming to the point of being impossible to resist.

Finally, there is a deep motivational problem for open source projects that operate in the
shadow of a proprietarily relicensed version: the sense that most of the salaried development
attention is going to the proprietary version anyway, and that therefore spending time con-
tributing to the open source version is a fool's game — that one is just helping a commer-
cial entity free up its own developers to work on features that the open source community
will never see. This fear is reasonable on its face, but it also becomes a self-fulfilling prophe-
cy: as more outside developers stay away, the company sees less reason to invest in the open
source codebase, because they're not getting a community multiplier effect anyway. Their
disengagement in turn discourages outside developers, and so on.

288

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

What seems to happen in practice is that companies that offer proprietarily relicensed soft-
ware do not get truly active development communities with external participants. They get
occasional small-scale bug fixes and cleanup patches from the outside, but end up doing
most of the hard work themselves. Since this book is about running free software projects,
I will just say that in my experience, proprietary relicensing schemes inevitably have a neg-
ative effect on the level of community engagement and the level of technical quality on the
open source side. If you conclude that for business reasons you want to try it anyway, then I
hope this section will at least help you mitigate some of those effects.15

Trademarks
Trademark law as applied to open source projects does not differ significantly from trade-
mark law as applied elsewhere. This sometimes surprises people: they think that if the code
can be copied freely, then that can't possibly be consistent with some entity controlling a
trademark on the project's name or logo. It is consistent, however, and below I'll explain
why, and give some examples.

First, understand what trademarks are about: they are about truth in labeling and, to some de-
gree, about endorsement. A trademarked name or symbol is a way for an entity — the enti-
ty who owns or controls that trademark — to signal, in an easily recognizable way, that they
approve of a particular product. Often they are signaling their approval because they are the
source of the product, and purchases of that product provide a revenue stream for them. But
that is not the only circumstance under which someone might want to enforce accurate attri-
bution. For example, certification marks are trademarked names or symbols that an entity ap-
plies to someone else's product, in order to signal that the product meets the certifying enti-
ty's standards.

Importantly, trademarks do not restrict copying, modification, or redistribution. I cannot
emphasize this enough: trademark is unrelated to copyright, and does not govern the same
actions that copyright governs. Trademark is about what you may publicly call things, not
about what you may do with those things nor with whom you may share them.

15Sometimes the terms-of-service agreements for online software distribution services — the Apple App Store, for ex-
ample — effectively force you to use proprietary relicensing if you want to distribute copylefted software. I won't go in-
to detail here, but if you're distributing GPL-licensed or other copylefted code from a place that restricts users from re-
distributing what they download, you may be in this situation. For more information, see Steven J. Vaughan-Nichols'
article No GPL Apps for Apple's App Store (https://www.zdnet.com/article/no-gpl-apps-for-apples-app-store/),
Richard Gaywood's followup article The GPL, the App Store, and you (https://www.engadget.com/2011/01/09/the-
gpl-the-app-store-and-you/), and Pieter Colpaert's explanation of how the iRail and BeTrains projects used pro forma
dual-licensing to get around the problem, About Apple store, GPL’s, VLC and BeTrains (https://bonsansnom.word-
press.com/2011/01/08/about-apple-store-gpls-vlc-and-betrains/). Thanks to reader Nathan Toone for pointing out this
problem.

289

https://www.zdnet.com/article/no-gpl-apps-for-apples-app-store/
https://www.engadget.com/2011/01/09/the-gpl-the-app-store-and-you/
https://www.engadget.com/2011/01/09/the-gpl-the-app-store-and-you/
https://bonsansnom.wordpress.com/2011/01/08/about-apple-store-gpls-vlc-and-betrains/
https://bonsansnom.wordpress.com/2011/01/08/about-apple-store-gpls-vlc-and-betrains/

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

One famous example of trademark enforcement in free and open source software demon-
strates these distinctions clearly.

Case study: Mozilla Firefox, the Debian
Project, and Iceweasel

The Mozilla Foundation owns the trademarked name "Firefox", which it uses to refer to its
popular free software web browser of the same name. The Debian Project, which maintains a
long-running and also quite popular GNU/Linux distribution, wanted to package Firefox for
users of Debian GNU/Linux.

So far, so good: Debian does not need Mozilla's permission to package Firefox, since Fire-
fox is free software. However, Debian does need Mozilla's permission to call the packaged
browser "Firefox" and to use the widely-recognized Firefox logo (you've probably seen it: a
long reddish fox curling its body and tail around a blue globe) as the icon for the program,
because those are trademarks owned by Mozilla.

Normally, Mozilla would have happily given its permission. After all, having Firefox dis-
tributed in Debian is good for Mozilla's mission of promoting openness on the Web. How-
ever, various technical and policy effects of the Debian packaging process left Debian un-
able to fully comply with Mozilla's trademark usage requirements, and as a result, Mozilla
informed Debian that their Firefox package could not use the Firefox name or branding. No
doubt Mozilla did so with some reluctance, as it is not ideal for them to have their software
used without clear attribution. However, they could have given Debian a trademark license
and yet chose not to; presumably, this is because Debian was doing something with the code
that Mozilla did not want affecting their own reputation.16

This decision by Mozilla did not mean that Debian had to remove Firefox from their pack-
age list, of course. Debian simply changed the name to "Iceweasel" and used a different logo.
The underlying code is still the Mozilla Firefox code, except for the minor bits Debian had to
change to integrate the different name and logo — changes they were perfectly free to make,
of course, because of the code's open source license.

It is even consistent to license your project's logo artwork files under a fully free license
while still retaining a trademark on the logo, as the following story of the GNOME logo and
the fish pedicure shop (I'm not making this up) illustrates.

16In fact, that was indeed the reason, though we do not need to go into the details here of exactly what changes Debian
made to the Firefox code that Mozilla disagreed with strongly enough to want to dissociate their name from the result.
The entire saga is recounted in more detail at https://en.wikipedia.org/wiki/Mozilla_software_rebranded_by_Debian.
Coincidentally, I'm writing these words on a Debian GNU/Linux system, where Iceweasel, now fortunately able to be
called Firefox again, has long been my default browser — I just used it to check that URL.

290

https://en.wikipedia.org/wiki/Mozilla_software_rebranded_by_Debian

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

Case study: The GNOME Logo and the Fish
Pedicure Shop

The GNOME project (https://gnome.org/), which produces one of the major free software
desktop environments, is represented legally by the GNOME Foundation (https://www.g-
nome.org/foundation/), which owns and enforces trademarks on behalf of the project. Their
best-known trademark is the GNOME logo: a curved, stylized foot with four toes floating
close above it.17

One day, Karen Sandler, then the Executive Director of the GNOME Foundation, heard from
a GNOME contributor that a mobile fish-pedicure van (fish pedicure is a technique in which
one places one's feet in water so that small fish can nibble away dead skin) was using a mod-
ified version of the GNOME logo. The central foot part of the image had been slightly mod-
ified to look like a fish, and a fifth toe had been added above, so that the overall logo looked
even more like a human foot but cleverly made reference to fish as well. You can see it,
along with discussion of other trademark issues GNOME has dealt with, in the Linux Week-
ly News article where this story is told in full: https://lwn.net/Articles/491639/.

Although GNOME does actively enforce its trademarks, Sandler did not see any infringe-
ment in this case: the fish-pedicure business is so distant from what the GNOME Project
does that there was no possibility of confusion in the mind of the public or dilution (if
you'll pardon the expression) of the mark. Furthermore, because the copyright license on
GNOME's images is an open source license, the fish pedicure company was free to make
their modifications to the graphic and display the results. There was no trademark violation,
because there was no infringement within GNOME's domain of activity, and there was no
copyright violation, because GNOME's materials are released under free licenses.

The point of these examples is to merely show that there is no inherent contradiction in regis-
tering and maintaining trademarks related to open source projects. This does not mean that a
trademark owner should do whatever they want with the marks, ignoring what other partici-
pants in the project have to say. Trademarks are like any other centrally-controlled non-fork-
able resource: if you use them in a way that harms a significant portion of the project's com-
munity, then expect complaints and pushback in return; if you use them in a way that sup-
ports the goals of the project, then most participants will be glad and will consider that use to
be itself a form of contribution.

17You can see examples at https://www.gnome.org/foundation/legal-and-trademarks/.

291

https://gnome.org/
https://www.gnome.org/foundation/
https://www.gnome.org/foundation/
https://lwn.net/Articles/491639/
https://www.gnome.org/foundation/legal-and-trademarks/

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

Patents
Software patents have long been a lightning rod issue in free software, because they pose
the only real threat against which the free software community cannot defend itself. Copy-
right and trademark problems can always be gotten around. If part of your code looks like it
may infringe on someone else's copyright, you can just rewrite that part while continuing to
use the same underlying algorithm. If it turns out someone has a trademark on your project's
name, at the very worst you can just rename the project. Although changing names would
be a temporary inconvenience, it wouldn't matter in the long run, since the code itself would
still do what it always did.

But a patent is a blanket injunction against implementing a certain idea. It doesn't matter
who writes the code, nor even what programming language is used. Once someone has ac-
cused a free software project of infringing a patent, the project must either stop implement-
ing that particular feature, or expose the project and its users to expensive and time-consum-
ing lawsuits. Since the instigators of such lawsuits are usually corporations with deep pocket-
s — that's who has the resources and inclination to acquire patents in the first place — most
free software projects cannot afford either to defend themselves nor to indemnify their users,
and must capitulate immediately even if they think it highly likely that the patent would be
unenforceable in court. To avoid getting into such a situation in the first place, free software
projects have sometimes had to code defensively, avoiding patented algorithms in advance
even when they are the best or only available solution to a programming problem.

Surveys and anecdotal evidence show that the vast majority of not only open source pro-
grammers but of all programmers think that software patents should be abolished entire-
ly.18 Open source programmers tend to feel particularly strongly about it, and may refuse to
work on projects that are too closely associated with the collection or enforcement of soft-
ware patents. If your organization collects software patents, then make it clear, in a public
and legally enforceable way, that the patents would never be enforced when the infringement
comes from open source code, and that the patents are only to be used as a defense in case
some other party initiates an infringement suit against your organization. This is not only the
right thing to do, it's also good open source public relations.19

Unfortunately, collecting patents purely for defensive purposes is rational. The current
patent system, at least in the United States, is by its nature an arms race: if your competi-
tors have acquired a lot of patents, then your best defense is to acquire a lot of patents your-
self, so that if you're ever hit with a patent infringement suit you can respond with a simi-

18See https://groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html for one such survey.
19For example, RedHat pledged that open source projects are safe from its patents, see https://www.redhat.com/en/about/
patent-promise.

292

https://groups.csail.mit.edu/mac/projects/lpf/Whatsnew/survey.html
https://www.redhat.com/en/about/patent-promise
https://www.redhat.com/en/about/patent-promise

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

lar threat — then the two parties usually sit down and work out a cross-licensing deal so that
neither of them has to pay anything, except to their patent lawyers of course.

The harm done to free software by software patents is more insidious than just direct threats
to code development, however. Software patents encourage an atmosphere of secrecy among
firmware designers, who justifiably worry that by publishing details of their interfaces they
will be making it easier for competitors to find ways to slap them with patent infringement
suits. This is not just a theoretical danger; it has apparently been happening for a long time in
the video card industry, for example. Many video card manufacturers are reluctant to release
the detailed programming specifications needed to produce high-performance open source
drivers for their cards, thus making it impossible for free operating systems to support those
cards to their full potential. Why would the manufacturers withold these specs? It doesn't
make sense for them to work against software support; after all, compatibility with more op-
erating systems can only mean more card sales. But it turns out that, behind the design room
door, these shops are all violating one another's patents, sometimes knowingly and some-
times accidentally. The patents are so unpredictable and so potentially broad that no card
manufacturer can ever be certain it's safe, even after doing a patent search. Thus, manufactur-
ers dare not publish their full interface specifications, since that would make it much easier
for competitors to figure out whether any patents are being infringed. (Of course, the nature
of this situation is such that you will not find a written admission from a primary source that
it is going on; I learned it through a personal communication.)

Modern free software licenses generally have clauses to combat, or at least mitigate, the dan-
gers arising from software patents. Usually these clauses work by automatically revoking the
overall open source license for any party who makes a patent infringement claim based on ei-
ther the work as a whole20 or on the claimant's contributions to the project. But though it is
useful, both legally and politically, to build patent defenses into free software licenses in this
way, in the end these protections are not enough to dispel the chilling effect that the threat of
patent lawsuits has on free software. Only changes in the substance or interpretation of inter-
national patent law will do that.

Recent developments, such as the 2014 decision by the U.S. Supreme Court against the
patentability of abstract ideas, in Alice Corp. v. CLS Bank (https://en.wikipedia.org/wiki/Al-
ice_Corp._v._CLS_Bank_International), have made the future of software patents unpre-
dictable. But there is so much money to be extracted via infringement claims, in particular
by "patent trolls" (https://en.wikipedia.org/wiki/Patent_troll) but in general by any entity
with a large patent portfolio and a lack of other revenue sources, that I am not optimistic this
fight will be over any time soon. If you want to learn more about the problem, there are good
links in the Wikipedia article https://en.wikipedia.org/wiki/Software_patent. I've also writ-

20Remember that a patent may cover — or "read on", in patent jargon — code that the patent owner did not themselves
write. It is thus not necessary for a party to have contributed code to an open source project in order to claim patent in-
fringement by that project.

293

https://en.wikipedia.org/wiki/Alice_Corp._v._CLS_Bank_International
https://en.wikipedia.org/wiki/Alice_Corp._v._CLS_Bank_International
https://en.wikipedia.org/wiki/Patent_troll
https://en.wikipedia.org/wiki/Software_patent

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

ten some blog posts summarizing the arguments against software patents, collected at https://
www.rants.org/patent-posts/. As of this writing it's been about ten years since the main posts
there were published, but all the reasons why software patents are a bad idea are just as true
now as they were then.

Since 2005, the Open Invention Network (https://openinventionnetwork.com/) has been pro-
viding a "patent non-aggression community" for open source software. OIN members agree
to provide royalty-free cross-licensing for a broad set of patents that read on widely-used
open source software. Oversimplifying a bit, joining OIN is essentially a way to say "Our
company doesn't want to enforce software patents on anyone else, at least not ones that affect
open source software, and we don't want anyone enforcing them on us either." Membership
is free and anyone may join. My company is a member, and I encourage you to consider OIN
membership for your organization (if any) as well.

Further Resources
This chapter has only been an introduction to free software licensing, trademark, and patent
issues. Although I hope it contains enough information to get you started on your own open
source project, any serious investigation of legal issues will quickly exhaust what this book
can provide. Here are some other resources:

• https://opensource.org/licenses

The OSI license introduction page is a well-maintained source of information about wide-
ly used open source licenses, and offers answers to frequently asked questions. It's a good
place to start if you have a general idea of what open source licenses do, but now need
more information, for example to choose a license for your project.

• Open (Source) for Business: A Practical Guide to Open Source Software Licensing by
Heather Meeker. Published April 2015. https://www.amazon.com/Open-Source-Busi-
ness-Practical-Licensing/dp/1511617772

Although organized around licensing and open source legal concepts, this is a general
guide to open source and business, and the author has a lot of experience in the field.

• Intellectual Property and Open Source: A Practical Guide to Protecting Code by Van
Lindberg. Published by O'Reilly Media, first edition July 2008, ISBN: 978-0-596-51796-0

This is a full-length book on open source licensing, trademarks, patents, contracting,
and more. It goes into much deeper detail than I could in this chapter. https://www.oreil-
ly.com/library/view/intellectual-property-and/9780596517960/ for details.

294

https://www.rants.org/patent-posts/
https://www.rants.org/patent-posts/
https://openinventionnetwork.com/
https://opensource.org/licenses
https://www.amazon.com/Open-Source-Business-Practical-Licensing/dp/1511617772
https://www.amazon.com/Open-Source-Business-Practical-Licensing/dp/1511617772
https://www.oreilly.com/library/view/intellectual-property-and/9780596517960/
https://www.oreilly.com/library/view/intellectual-property-and/9780596517960/

Legal Matters: Licenses, Copy-
rights, Trademarks and Patents

• Make Your Open Source Software GPL-Compatible. Or Else. by Dr. David A. Wheeler, at
https://dwheeler.com/essays/gpl-compatible.html.

This is a detailed and well-written article on why it is important to use a GPL-compatible
license even if you don't use the GPL itself. The article also touches on many other licens-
ing questions, and has a high density of excellent links.

295

https://dwheeler.com/essays/gpl-compatible.html

Appendix A. Copyright
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Internation-
al License. To view a copy of this license, visit https://creativecommons.org/licenses/by-
sa/4.0/. A summary of the license is given below, followed by the full legal text. If you wish
to distribute some or all of this work under different terms, please contact the author, Karl
Fogel <kfogel@red-bean.com>.

You are free:

• to Share — to copy, distribute and transmit the work

• to Remix — to adapt the work

Under the following conditions:

• Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

• Share Alike. If you alter, transform, or build upon this work, you may distribute the result-
ing work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this work.
The best way to do this is with a link to this web page.

• Any of the above conditions can be waived if you get permission from the copyright hold-
er.

• Nothing in this license impairs or restricts the author's moral rights.

Attribution-ShareAlike 4.0 International
Creative Commons Corporation ("Creative Commons") is not a law firm and does not pro-
vide legal services or legal advice. Distribution of Creative Commons public licenses does
not create a lawyer-client or other relationship. Creative Commons makes its licenses and re-
lated information available on an "as-is" basis. Creative Commons gives no warranties re-
garding its licenses, any material licensed under their terms and conditions, or any related in-
formation. Creative Commons disclaims all liability for damages resulting from their use to
the fullest extent possible.

296

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Copyright

Using Creative Commons Public Licenses

Creative Commons public licenses provide a standard set of terms and conditions that cre-
ators and other rights holders may use to share original works of authorship and other ma-
terial subject to copyright and certain other rights specified in the public license below. The
following considerations are for informational purposes only, are not exhaustive, and do not
form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those authorized
to give the public permission to use material in ways otherwise restricted by copyright and
certain other rights. Our licenses are irrevocable. Licensors should read and understand the
terms and conditions of the license they choose before applying it. Licensors should also se-
cure all rights necessary before applying our licenses so that the public can reuse the materi-
al as expected. Licensors should clearly mark any material not subject to the license. This in-
cludes other CC- licensed material, or material used under an exception or limitation to copy-
right. More considerations for licensors: https://wiki.creativecommons.org/wiki/Considera-
tions_for_licensors_and_licensees#Considerations_for_licensors

Considerations for the public: By using one of our public licenses, a licensor grants the pub-
lic permission to use the licensed material under specified terms and conditions. If the licen-
sor's permission is not necessary for any reason--for example, because of any applicable ex-
ception or limitation to copyright--then that use is not regulated by the license. Our licenses
grant only permissions under copyright and certain other rights that a licensor has authority
to grant. Use of the licensed material may still be restricted for other reasons, including be-
cause others have copyright or other rights in the material. A licensor may make special re-
quests, such as asking that all changes be marked or described. Although not required by our
licenses, you are encouraged to respect those requests where reasonable. More_considera-
tions for the public: https://wiki.creativecommons.org/Considerations_for_licensors_and_li-
censees#Considerations_for_licensees

Creative Commons Attribution-ShareAlike 4.0
International Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by
the terms and conditions of this Creative Commons Attribution-ShareAlike 4.0 International
Public License ("Public License"). To the extent this Public License may be interpreted as a
contract, You are granted the Licensed Rights in consideration of Your acceptance of these
terms and conditions, and the Licensor grants You such rights in consideration of benefits the
Licensor receives from making the Licensed Material available under these terms and condi-
tions.

297

https://wiki.creativecommons.org/wiki/Considerations_for_licensors_and_licensees#Considerations_for_licensors
https://wiki.creativecommons.org/wiki/Considerations_for_licensors_and_licensees#Considerations_for_licensors
https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees
https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees

Copyright

Section 1 -- Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived
from or based upon the Licensed Material and in which the Licensed Material is translat-
ed, altered, arranged, transformed, or otherwise modified in a manner requiring permis-
sion under the Copyright and Similar Rights held by the Licensor. For purposes of this
Public License, where the Licensed Material is a musical work, performance, or sound
recording, Adapted Material is always produced where the Licensed Material is synched
in timed relation with a moving image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in
Your contributions to Adapted Material in accordance with the terms and conditions of
this Public License.

c. BY-SA Compatible License means a license listed at creativecommons.org/compatibleli-
censes, approved by Creative Commons as essentially the equivalent of this Public Li-
cense.

d. Copyright and Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound recording, and Sui
Generis Database Rights, without regard to how the rights are labeled or categorized. For
purposes of this Public License, the rights specified in Section 2(b)(1)-(2) are not Copy-
right and Similar Rights.

e. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article 11 of
the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international
agreements.

f. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or
limitation to Copyright and Similar Rights that applies to Your use of the Licensed Mater-
ial.

g. License Elements means the license attributes listed in the name of a Creative Commons
Public License. The License Elements of this Public License are Attribution and Share-
Alike.

h. Licensed Material means the artistic or literary work, database, or other material to which
the Licensor applied this Public License.

i. Licensed Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that apply to
Your use of the Licensed Material and that the Licensor has authority to license.

298

Copyright

j. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

k. Share means to provide material to the public by any means or process that requires per-
mission under the Licensed Rights, such as reproduction, public display, public perfor-
mance, distribution, dissemination, communication, or importation, and to make material
available to the public including in ways that members of the public may access the mate-
rial from a place and at a time individually chosen by them.

l. Sui Generis Database Rights means rights other than copyright resulting from Directive
96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, as amended and/or succeeded, as well as other essentially equiva-
lent rights anywhere in the world.

m. You means the individual or entity exercising the Licensed Rights under this Public Li-
cense. Your has a corresponding meaning.

Section 2 -- Scope.

a. License grant.

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants
You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license
to exercise the Licensed Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part; and

B. produce, reproduce, and Share Adapted Material.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limi-
tations apply to Your use, this Public License does not apply, and You do not need to
comply with its terms and conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to
exercise the Licensed Rights in all media and formats whether now known or hereafter
created, and to make technical modifications necessary to do so. The Licensor waives
and/or agrees not to assert any right or authority to forbid You from making technical
modifications necessary to exercise the Licensed Rights, including technical modifica-
tions necessary to circumvent Effective Technological Measures. For purposes of this
Public License, simply making modifications authorized by this Section 2(a) (4) never
produces Adapted Material.

5. Downstream recipients.

299

Copyright

A. Offer from the Licensor -- Licensed Material. Every recipient of the Licensed Ma-
terial automatically receives an offer from the Licensor to exercise the Licensed
Rights under the terms and conditions of this Public License.

B. Additional offer from the Licensor -- Adapted Material. Every recipient of Adapted
Material from You automatically receives an offer from the Licensor to exercise the
Licensed Rights in the Adapted Material under the conditions of the Adapter's Li-
cense You apply.

C. No downstream restrictions. You may not offer or impose any additional or differ-
ent terms or conditions on, or apply any Effective Technological Measures to, the
Licensed Material if doing so restricts exercise of the Licensed Rights by any recipi-
ent of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as
permission to assert or imply that You are, or that Your use of the Licensed Material is,
connected with, or sponsored, endorsed, or granted official status by, the Licensor or
others designated to receive attribution as provided in Section 3(a)(1)(A)(i).

b. Other rights.

1. Moral rights, such as the right of integrity, are not licensed under this Public License,
nor are publicity, privacy, and/or other similar personality rights; however, to the ex-
tent possible, the Licensor waives and/or agrees not to assert any such rights held by
the Licensor to the limited extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for
the exercise of the Licensed Rights, whether directly or through a collecting society
under any voluntary or waivable statutory or compulsory licensing scheme. In all other
cases the Licensor expressly reserves any right to collect such royalties.

Section 3 -- License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.

1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

300

Copyright

i. identification of the creator(s) of the Licensed Material and any others designat-
ed to receive attribution, in any reasonable manner requested by the Licensor (in-
cluding by pseudonym if designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any pre-
vious modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the
text of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on
the medium, means, and context in which You Share the Licensed Material. For exam-
ple, it may be reasonable to satisfy the conditions by providing a URI or hyperlink to a
resource that includes the required information.

3. If requested by the Licensor, You must remove any of the information required by Sec-
tion 3(a)(1)(A) to the extent reasonably practicable.

b. ShareAlike.

In addition to the conditions in Section 3(a), if You Share Adapted Material You produce,
the following conditions also apply.

1. The Adapter's License You apply must be a Creative Commons license with the same
License Elements, this version or later, or a BY-SA Compatible License.

2. You must include the text of, or the URI or hyperlink to, the Adapter's License You ap-
ply. You may satisfy this condition in any reasonable manner based on the medium,
means, and context in which You Share Adapted Material.

3. You may not offer or impose any additional or different terms or conditions on, or ap-
ply any Effective Technological Measures to, Adapted Material that restrict exercise of
the rights granted under the Adapter's License You apply.

301

Copyright

Section 4 -- Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of
the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, repro-
duce, and Share all or a substantial portion of the contents of the database;

b. if You include all or a substantial portion of the database contents in a database in which
You have Sui Generis Database Rights, then the database in which You have Sui Gener-
is Database Rights (but not its individual contents) is Adapted Material, including for pur-
poses of Section 3(b); and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial por-
tion of the contents of the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obliga-
tions under this Public License where the Licensed Rights include other Copyright and Simi-
lar Rights.

Section 5 -- Disclaimer of Warranties and Limitation of
Liability.

a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO
THE EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL
AS-IS AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER
EXPRESS, IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT
LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR
OTHER DEFECTS, ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS,
WHETHER OR NOT KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF
WARRANTIES ARE NOT ALLOWED IN FULL OR IN PART, THIS DISCLAIMER
MAY NOT APPLY TO YOU.

b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT, INCI-
DENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR DAM-

302

Copyright

AGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR IN
PART, THIS LIMITATION MAY NOT APPLY TO YOU.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted
in a manner that, to the extent possible, most closely approximates an absolute disclaimer
and waiver of all liability.

Section 6 -- Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under this
Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it rein-
states:

1. automatically as of the date the violation is cured, provided it is cured within 30 days
of Your discovery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may
have to seek remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under sep-
arate terms or conditions or stop distributing the Licensed Material at any time; however,
doing so will not terminate this Public License.

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

Section 7 -- Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions com-
municated by You unless expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not
stated herein are separate from and independent of the terms and conditions of this Public
License.

Section 8 -- Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to,
reduce, limit, restrict, or impose conditions on any use of the Licensed Material that could
lawfully be made without permission under this Public License.

303

Copyright

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it
shall be automatically reformed to the minimum extent necessary to make it enforceable.
If the provision cannot be reformed, it shall be severed from this Public License without
affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply con-
sented to unless expressly agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or
waiver of, any privileges and immunities that apply to the Licensor or You, including
from the legal processes of any jurisdiction or authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons
may elect to apply one of its public licenses to material it publishes and in those instances
will be considered the “Licensor.” The text of the Creative Commons public licenses is ded-
icated to the public domain under the CC0 Public Domain Dedication. Except for the lim-
ited purpose of indicating that material is shared under a Creative Commons public license
or as otherwise permitted by the Creative Commons policies published at creativecommon-
s.org/policies, Creative Commons does not authorize the use of the trademark "Creative
Commons" or any other trademark or logo of Creative Commons without its prior written
consent including, without limitation, in connection with any unauthorized modifications to
any of its public licenses or any other arrangements, understandings, or agreements concern-
ing use of licensed material. For the avoidance of doubt, this paragraph does not form part of
the public licenses.

Creative Commons may be contacted at https://creativecommons.org/.

304

https://creativecommons.org/

	Producing Open Source Software
	Table of Contents
	Preface
	Why Write This Book?
	Who Should Read This Book?
	Sources
	Acknowledgements
	For the first edition (2005)
	For the second edition (2023)

	Disclaimer

	Chapter 1. Introduction
	History
	The Rise of Proprietary Software and Free Software
	Conscious Resistance
	Accidental Resistance

	"Free" Versus "Open Source"

	The Situation Today

	Chapter 2. Getting Started
	But First, Look Around
	Starting From What You Have
	Choose a Good Name
	Own the Name in the Important Namespaces

	Have a Clear Mission Statement
	State That the Project is Free
	Features and Requirements List
	Development Status
	Development Status Should Always Reflect Reality

	Downloads
	Version Control and Bug Tracker Access
	Communications Channels
	Developer Guidelines
	Documentation
	Availability of Documentation
	Developer Documentation

	Demos, Screenshots, Videos, and Example Output
	Hosting

	Choosing a License and Applying It
	The "Do Anything" Licenses
	The GPL
	How to Apply a License to Your Software

	Setting the Tone
	Avoid Private Discussions
	Nip Rudeness in the Bud
	Codes of Conduct
	Practice Conspicuous Code Review
	Case study

	Be Open From Day One
	Waiting Just Creates an Exposure Event

	Opening a Formerly Closed Project
	Announcing

	Chapter 3. Technical Infrastructure
	What a Project Needs
	Web Site
	Canned Hosting
	Choosing a Canned Hosting Site
	Hosting on Fully Open Source Infrastructure
	Anonymity and Involvement

	Message Forums / Mailing Lists
	Choosing the Right Forum Management Software
	Spam Prevention
	Filtering posts

	Identification and Header Management
	The Great Reply-to Debate
	Archiving
	Mailing List / Message Forum Software

	Version Control
	Version Control Vocabulary
	Choosing a Version Control System
	Using the Version Control System
	Version Everything
	Browsability
	Use Branches to Avoid Bottlenecks
	Singularity of Information
	Authorization

	Receiving and Reviewing Contributions
	Pull Requests / Merge Requests
	Commit Notifications / Commit Emails

	Bug Tracker
	Interaction with Email
	Pre-Filtering the Bug Tracker

	Real-Time Chat Systems
	Chat Rooms and Growth
	Nick-Flagging and Notifications
	Chat Bots
	Commit Notifications in Chat

	Wikis
	Wikis and Spam
	Choosing a Wiki

	Translation Infrastructure
	Social Networking Services

	Chapter 4. Social and Political Infrastructure
	Forkability
	Benevolent Dictators
	Who Can Be a Good Benevolent Dictator?

	Consensus-based Democracy
	Version Control Means You Can Relax
	When Consensus Cannot Be Reached, Vote
	When To Vote
	Who Votes?
	Not All Maintainers Are Coders
	Adding New Maintainers

	Polls Versus Votes
	Vetoes

	Writing It All Down
	Joining or Creating a Non-Profit Organization

	Chapter 5. Organizations and Money: Businesses, Non-Profits, and Governments
	The Economics of Open Source
	Goals of Corporate Involvement
	Governments and Open Source
	Being Open Source From Day One is Especially Important for Government Projects

	Hire for the Long Term
	Case study

	Appear as Many, Not as One
	Be Open About Your Motivations
	Money Can't Buy You Love
	Contracting
	Hiring From Within the Community
	Hiring From Outside The Community
	Contracting and Transparency
	Review and Acceptance of Changes
	Case Study: the CVS Password-Authentication Protocol

	Update Your RFI, RFP and Contract Language
	Open Source Quality Assurance (OSQA)
	Don't Surprise Your Lawyers

	Funding Non-Programming Activities
	Technical Quality Assurance (i.e., Professional Testing)
	Legal Advice and Protection
	Documentation and Usability
	Funding User Experience (UX) Work

	Providing Build Farms and Development Servers
	Running Security Audits
	Sponsoring Conferences, Hackathons, and other Developer Meetings

	Marketing
	Open Source and Freedom from Vendor Lock-In
	Remember That You Are Being Watched
	Case Study: You Can't Fake It, So Don't Try

	Don't Bash Competing Vendors' Efforts
	"Commercial" vs "Proprietary"

	Open Source and the Organization
	Dispel Myths Within Your Organization
	Foster Pools of Expertise in Multiple Places
	Establish Contact Early With Relevant Communities

	Don't Let Publicity Events Drive Project Schedule
	The Key Role of Middle Management
	InnerSourcing

	Hiring Open Source Developers
	Hiring for Influence

	Evaluating Open Source Projects
	Crowdfunding and Bounties

	Chapter 6. Communications
	Written Culture
	You Are What You Write
	Structure and Formatting
	Content
	Tone
	Recognizing Rudeness
	Face

	Avoiding Common Pitfalls
	Don't Post Without a Purpose
	Productive vs Unproductive Threads
	The Smaller the Topic, the Longer the Debate
	Avoid Holy Wars
	The "Noisy Minority" Effect
	Don't Bash Competing Open Source Products

	Difficult People
	Handling Difficult People
	Case study

	Handling Growth
	Conspicuous Use of Archives
	Treat All Resources Like Archives

	Codifying Tradition

	Choose the Right Forum
	Cross-Link Between Forums

	Publicity
	Announcing Releases and Other Major Events
	Announcing Security Vulnerabilities
	Receive the Report
	Develop the Fix Quietly
	CVE Numbers
	Common Vulnerability Scoring System (CVSS) Scores
	Pre-Notification
	Distribute the Fix Publicly
	Further Reading on Handling Security Vulnerabilities

	Chapter 7. Packaging, Releasing, and Daily Development
	Release Numbering
	Release Number Components
	Semantic Versioning
	The Even/Odd Strategy

	Release Branches
	Mechanics of Release Branches

	Stabilizing a Release
	Dictatorship by Release Owner
	Voting on Changes
	Managing Collaborative Release Stabilization
	Release Manager

	Packaging
	Format
	Name and Layout
	To Capitalize or Not to Capitalize
	Pre-Releases

	Compilation and Installation
	Binary Packages

	Testing and Releasing
	Candidate Releases
	Announcing Releases

	Maintaining Multiple Release Lines
	Security Releases

	Releases and Daily Development
	Planning Releases

	Chapter 8. Managing Participants
	Community and Motivation
	Delegation
	Distinguish Clearly Between Inquiry and Assignment
	Follow Up After You Delegate
	Notice What People Are Interested In

	Praise and Criticism
	Prevent Territoriality
	The Automation Ratio
	Automated testing

	Treat Every User as a Potential Participant
	Meeting In Person: Conferences, Hackfests, Code-a-Thons, Code Sprints, Retreats

	Share Management Tasks as Well as Technical Tasks
	"Manager" Does Not Mean "Owner"
	Patch Manager (or Pull Request Manager)
	Translation Manager
	Documentation Manager
	Issue Manager

	Transitions
	Committers
	Committers vs Maintainers
	Choosing Committers
	Revoking Commit Access
	Partial Commit Access
	Dormant Committers
	Avoid Mystery

	Credit
	Forks
	"Development Forks" versus "Hard Forks"
	Figuring Out Whether You're the Fork
	Handling a Fork
	Initiating a Fork

	Chapter 9. Legal Matters: Licenses, Copyrights, Trademarks and Patents
	Terminology
	Aspects of Licenses
	The GPL and License Compatibility
	Choosing a License
	The GNU General Public License
	The "or any later version" Option: Future-Proofing the GPL
	The GNU Affero GPL: A Version of the GNU GPL for Server-Side Code
	The Copyright Holder Is Special, Even In Copyleft Licenses
	Is the GPL Free or Not Free?

	Contributor Agreements
	Doing Nothing
	Contributor License Agreements
	Developer Certificate of Origin (DCO): An Easier Style of CLA

	Proprietary Relicensing
	Problems with Proprietary Relicensing

	Trademarks
	Case study: Mozilla Firefox, the Debian Project, and Iceweasel
	Case study: The GNOME Logo and the Fish Pedicure Shop

	Patents
	Further Resources

	Appendix A. Copyright
	Attribution-ShareAlike 4.0 International
	Using Creative Commons Public Licenses
	Creative Commons Attribution-ShareAlike 4.0 International Public License
	Section 1 -- Definitions.
	Section 2 -- Scope.
	Section 3 -- License Conditions.
	Section 4 -- Sui Generis Database Rights.
	Section 5 -- Disclaimer of Warranties and Limitation of Liability.
	Section 6 -- Term and Termination.
	Section 7 -- Other Terms and Conditions.
	Section 8 -- Interpretation.
	

